Advertisement

Journal of Low Temperature Physics

, Volume 145, Issue 1–4, pp 337–356 | Cite as

Horizons and Ergoregions in Superfluids

  • G. E. Volovik
Universal Features in Turbulence: From Quantum to Cosmological Scales

Ripplons—gravity-capillary waves on the free surface of a liquid or at the interfaces between two superfluids—are the most favorable excitations for simulation of the general-relativistic effects related to horizons and ergoregions. The white-hole horizon for the “relativistic” ripplons at the surface of the shallow liquid is easily simulated using the kitchen-bath hydraulic jump. The same white-hole horizon is observed in quantum liquid—superfluid 4He. The ergoregion for the “non-relativistic” ripplons is generated in the experiments with two sliding 3He superfluids. The common property experienced by all these ripplons is the Miles instability inside the ergoregion or horizon. Because of the universality of the Miles instability, one may expect that it could take place inside the horizon of the astrophysical black holes, if there is a preferred reference frame which comes from the trans-Planckian physics. If this is the case, the black hole would evapotate much faster than due to the Hawking radiation. Hawking radiation from the artificial black hole in terms of the quantum tunneling of phonons and ripplons is also discussed.

Keywords

effective gravity event horizon white hole hydraulic jump 

Pacs Numbers

04.70.-s 67.40.Hf 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Hughes, Trust but verify: The case for the atsrophysical black holes, hep-ph/0511217; R. Narayan, Black holes in astrophysics, gr-qc/050607; P. T. Chrusciel, Lect. Notes Phys. 604, 61 (2002).Google Scholar
  2. 2.
    Volovik G.E. (2003). The Universe in a Helium Droplet. Clarendon Press, OxfordzbMATHGoogle Scholar
  3. 3.
    Unruh W.G. (1981). Phys. Rev. Lett. 46: 1351CrossRefADSGoogle Scholar
  4. 4.
    Srinivasan K., Padmanabhan T. (1999). Phys. Rev. D 60: 24007CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Volovik G.E. (1999). JETP Lett. 69: 705CrossRefADSGoogle Scholar
  6. 6.
    Parikh M.K., Wilczek F. (2000). Phys. Rev. Lett. 85: 5042CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Barcelo C., Liberati S., Visser M. (2005). Living Rev. Relat. 8: 12ADSGoogle Scholar
  8. 8.
    Schützhold R., Unruh W.G. (2002). Phys. Rev. D 66: 044019CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Blaauwgeers R., Eltsov V.B., Eska G., Finne A.P., Haley R.P., Krusius M., Ruohio J.J., Skrbek L., Volovik G.E. (2002). Phys. Rev. Lett. 89: 155301CrossRefADSGoogle Scholar
  10. 10.
    A. P. Finne, V. B. Eltsov, R. Hanninen, N. B. Kopnin, J. Kopu, M. Krusius, M. Tsubota, and G. E. Volovik, Novel hydrodynamic phenomena in superfluid 3He, cond-mat/0606619.Google Scholar
  11. 11.
    G. E. Volovik, JETP Lett. 75, 418 (2002); JETP Lett. 76, 240 (2002).Google Scholar
  12. 12.
    Rolley E., Guthmann C., Pettersen M.S., Chevallier C. (2006). AIP Conf. Proc. 850: 141 physics/0508200ADSGoogle Scholar
  13. 13.
    Volovik G.E. (2005). JETP Lett. 82: 624CrossRefGoogle Scholar
  14. 14.
    Painlevé P. C. R. Acad. Sci. (Paris) 173, 677 (1921); A. Gullstrand, Ark. Mater. Astron. Fysiatr. 16(8): 1(1922).Google Scholar
  15. 15.
    A.J.S. Hamilton and J. P. Lisle, The river model of black holes, gr-qc/0411060.Google Scholar
  16. 16.
    Volovik G.E. (1992). Exotic Properties of Superfluid 3He. World Scientific, SingaporeGoogle Scholar
  17. 17.
    Jacobson T.A., Volovik G.E. (1998). Phys. Rev. D 58: 064021CrossRefADSGoogle Scholar
  18. 18.
    M. Nouri-Zonoz and T. Padmanabhan, The classical essence of black hole radiation, gr-qc/9812088.Google Scholar
  19. 19.
    Belinski V.A. (2006). Phys. Lett. A 354: 249CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    E. T. Akhmedov, V. Akhmedova, and D. Singleton, Hawking temperature in the tunneling picture, hep-th/0608098.Google Scholar
  21. 21.
    Hawking S.W. (1975). Commun. Math. Phys. 43: 199CrossRefMathSciNetGoogle Scholar
  22. 22.
    Kopnin N.B. (1987). JETP 65: 1187Google Scholar
  23. 23.
    Schützhold R., Unruh W.G. (2005). Phys. Rev. Lett. 95: 031301CrossRefADSGoogle Scholar
  24. 24.
    Unruh W.G., Schtzhold R. (2005). Phys. Rev. D 71: 024028CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    V. B. Eltsov, M. Krusius, and G. E. Volovik, Transition to superfluid turbulence, J. Low Temp. Phys. DOI: 10.1007/s10909-006-9229-1.Google Scholar
  26. 26.
    Rayleigh L. (1914). Proc. R. Soc. Lond. A 90: 324ADSGoogle Scholar
  27. 27.
    Ellegaard C., Hansen A.E., Haaning A., Hansen K., Marcussen A., Bohr T., Hansen J.L. Watanabe S (1998). Nature 392, 767CrossRefADSGoogle Scholar
  28. 28.
    Vachaspati T. (2004). J. Low Temp. Phys. 136: 361CrossRefGoogle Scholar
  29. 29.
    Parts Ü., Ruutu V.M.H., Koivuniemi J.H., Bunkov Yu.N., Dmitriev V.V., Fogelström M., Huenber M., Kondo Y., Kopnin N.B., Korhonen J.S., Krusius M., Lounasmaa O.V., Soininen P.I., Volovik G.E. (1995). Europhys. Lett. 31: 449Google Scholar
  30. 30.
    Vorontsov A., Sauls J.A. (2004). J. Low Temp. Phys. 134: 1001CrossRefGoogle Scholar
  31. 31.
    T. Bohr, P. Dimon, and V. Putkaradge, J. Fluid Mech. 254, 635 (1993); T. Bohr, C. Ellegaard, A. E. Hansen, and A. Haaning, Physica B 228, 1 (1996).Google Scholar
  32. 32.
    Corley S., Jacobson T. (1999). Phys. Rev. D 59: 124011CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Low Temperature LaboratoryHelsinki University of TechnologyHUTFinland
  2. 2.Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations