Journal of Low Temperature Physics

, Volume 145, Issue 1–4, pp 107–124 | Cite as

Quantum Turbulence in 4He, Oscillating Grids, and Where Do We Go Next?

  • D. Charalambous
  • P. C. Hendry
  • M. Holmes
  • G. G. Ihas
  • P. V. E. McClintock
  • L. Skrbek
Universal Features in Turbulence: From Quantum to Cosmological Scales

Experimental approaches to the study of quantum turbulence (QT) in superfluid 4He in the low temperature limit, where the normal fluid density is effectively zero, are considered. A succinct general introduction covers liquid 4He, superfluidity, critical velocities for the onset of dissipation, quantized vortex lines and QT. The QT can be created mechanically by the oscillation of wires or grids above characteristic critical velocities. The interesting dynamics of the oscillating grid are discussed. It exhibits an enhanced effective mass due to backflow, as expected from classical hydrodynamics. It is found that the critical velocity attributable to the onset of QT production rises with increasing temperature. Oscillating objects like grids or wires create QT that is not well-characterized in terms of length scale, and the QT is not spatially homogeneous. The QT can be detected by the trapping of negative ions on vortex cores. Although the corresponding capture cross-section has not yet been measured, it is evidently very small, so that the technique cannot be expected to be a very sensitive one. In the future it is hoped to create well-characterized, homogeneous QT by means of a drawn grid. Improved sensitivity in the detection of QT is being sought through calorimetric techniques that monitor the temperature rise of the liquid caused by the decay of the vortex lines.

Pacs Numbers

67.40.vs 67.57.de 47.37.+q 47.27.cn 05.45.-a 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wilks J. (1967) The Properties of Liquid and Solid Helium. Clarendon Press, OxfordGoogle Scholar
  2. 2.
    Davis S.I., Hendry P.C., McClintock P.V.E. (2000). Physica B 280, 43CrossRefADSGoogle Scholar
  3. 3.
    Bradley D.I., Fisher S.N., Guénault A.M., Lowe M.R., Pickett G.R., Rahm A., Whitehead R.C.V. (2004). Phys. Rev. Lett. 93:235302CrossRefADSGoogle Scholar
  4. 4.
    Bradley D.I., Clubb D.O., Fisher S.N., Guénault A.M., Haley R.P., Matthews C.J., Pickett G.R., Tsepelin V., Zaki K. (2005). Phys. Rev. Lett. 95:035302CrossRefADSGoogle Scholar
  5. 5.
    Bradley D.I., Clubb D.O., Fisher S.N., Guénault A.M., Haley R.P., Matthews C.J., Pickett G.R., Tsepelin V., Zaki K. (2006). Phys. Rev. Lett. 96:035301CrossRefADSGoogle Scholar
  6. 6.
    Sears V.F., Svensson E.C., Martel P., Woods A.D.B. (1982). Phys. Rev. Lett. 49, 279CrossRefADSGoogle Scholar
  7. 7.
    F. London, Superfluids, Reprinted Dover, New York (1964); Wiley, New York (1954), Vol. II.Google Scholar
  8. 8.
    E. Andronikashvili, in translated by Helium 4, Z. M. Galasiewicz, (ed.), Pergamon, Oxford (1971), pp. 154–165.Google Scholar
  9. 9.
    Landau L. (1941). J. Phys. (USSR) 5, 71Google Scholar
  10. 10.
    Landau L. (1947). J. Phys. (USSR) 11, 91Google Scholar
  11. 11.
    W. F. Vinen, in Progress in Low Temperature Physics, C. J. Gorter, ed., North Holland, Amsterdam (1961), Vol. III, Chap. 1.Google Scholar
  12. 12.
    Donnelly R.J. (1991) Quantized Vortices in Helium II. Cambridge University Press, CambridgeGoogle Scholar
  13. 13.
    Hall H.E., Vinen W.F. (1956). Proc. R. Soc. (Lond.) A 238, 204ADSCrossRefGoogle Scholar
  14. 14.
    Awschalom D.D., Schwarz K.W. (1984). Phys. Rev. Lett. 52, 49CrossRefADSGoogle Scholar
  15. 15.
    Allum D.R., McClintock P.V.E., Phillips A., Bowley R.M. (1977). Philos. Trans. R. Soc. (Lond.) A 284, 179ADSGoogle Scholar
  16. 16.
    P. V. E. McClintock and R. M. Bowley, in Progress in Low Temperature Physics, W. P. Halperin, (ed.), Elsevier, Amsterdam (1995), Vol. XIV, pp. 1–68.Google Scholar
  17. 17.
    Vinen W.F. (1963) Enrico Fermi Int. School of Physics. Course XXI Academic Press, New York, pp. 336–355Google Scholar
  18. 18.
    Hendry P.C., Lawson N.S., McClintock P.V.E., Williams C.D.H. (1988). Phys. Rev. Lett. 60, 604CrossRefADSGoogle Scholar
  19. 19.
    Muirhead C.M., Vinen W.F., Donnelly R.J. (1984). Philos. Trans. R. Soc. (Lond.) A 311, 433ADSGoogle Scholar
  20. 20.
    Schwarz K.W. (1978). Phys. Rev. B 18, 245CrossRefADSGoogle Scholar
  21. 21.
    Koplik J., Levine H. (1993). Phys. Rev. Lett. 71:1375CrossRefADSGoogle Scholar
  22. 22.
    W. F. Vinen, J. Low Temp. Phys. in this volume (2006).Google Scholar
  23. 23.
    Maurer J., Tabeling P. (1998). Europhys. Lett. 43, 29CrossRefADSGoogle Scholar
  24. 24.
    Stalp S.R., Skrbek L., Donnelly R.J. (1999). Phys. Rev. Lett. 82:4831CrossRefADSGoogle Scholar
  25. 25.
    Vinen W.F., Tsubota M., Mitani A. (2003). Phys. Rev. Lett. 91:135301CrossRefADSGoogle Scholar
  26. 26.
    Vinen W.F., Niemela J.J. (2002). J. Low Temp. Phys. 128, 167CrossRefGoogle Scholar
  27. 27.
    Vinen W.F. (2005). Phys. Rev. B 71:024513CrossRefADSGoogle Scholar
  28. 28.
    Kozik E., Svistunov B. (2004). Phys. Rev. Lett. 92:035301CrossRefADSGoogle Scholar
  29. 29.
    Ellis T., McClintock P.V.E. (1985). Phil. Trans. R. Soc. (Lond.) A 315, 259ADSGoogle Scholar
  30. 30.
    Bowley R.M., McClintock P.V.E., Moss F.E., Stamp P.C.E. (1980). Phys. Rev. Lett. 44, 161CrossRefADSGoogle Scholar
  31. 31.
    Bowley R.M., McClintock P.V.E., Moss F.E., Nancolas G.G., Stamp P.C.E. (1982). Philos. Trans. R. Soc. (Lond.) A 307, 201ADSGoogle Scholar
  32. 32.
    Hendry P.C., Lawson N.S., McClintock P.V.E., Williams C.D.H., Bowley R.M. (1990). Philos. Trans. R. Soc. (Lond.) A 332, 387ADSGoogle Scholar
  33. 33.
    Nancolas G.G., Bowley R.M., McClintock P.V.E. (1985). Philos. Trans. R. Soc. (Lond.) A 313, 537ADSGoogle Scholar
  34. 34.
    Bowley R.M., Sheard F.W. (1977). Phys. Rev. B 16, 244CrossRefADSGoogle Scholar
  35. 35.
    Nancolas G.G., Ellis T., McClintock P.V.E., Bowley R.M. (1985). Nature 316, 797CrossRefADSGoogle Scholar
  36. 36.
    Rayfield G.W., Reif F. (1964). Phys. Rev. A 136:1194CrossRefADSGoogle Scholar
  37. 37.
    Ostermeier R.M., Glaberson W.I. (1975). J. Low Temp. Phys. 20, 159CrossRefGoogle Scholar
  38. 38.
    D. Charalambous, L. Skrbek, P. C. Hendry, P. V. E. McClintock, and W. F. Vinen, Phys. Rev. E, in press (2006).Google Scholar
  39. 39.
    Nichol H.A., Skrbek L., Hendry P.C., McClintock P.V.E. (2004). Phys. Rev. Lett. 92:244501CrossRefADSGoogle Scholar
  40. 40.
    Nichol H.A., Skrbek L., Hendry P.C., McClintock P.V.E. (2004). Phys. Rev. E 70:056307CrossRefADSGoogle Scholar
  41. 41.
    D. Charalambous, P. C. Hendry, P. V. E. McClintock, L. Skrbek, and W. F. Vinen, in Proceedings of the 24th International Conference on Low Temperature Physics, S. P. Hershfield, S. O. Hill, P. J. Hirschfeld, and Y. Takano, (eds.), AIP, New York (2006), pp. 205–206.Google Scholar
  42. 42.
    Yano H., Handa A., Nakagawa H., Obara K., Ishikawa O., Hata T., Nakagawa M. (2005). J. Low Temp. Phys. 138, 561CrossRefADSGoogle Scholar
  43. 43.
    Jäger J., Schuderer B., Schoepe W. (1995). Phys. Rev. Lett. 74, 566CrossRefADSGoogle Scholar
  44. 44.
    H. Yano, A. Handa, M. Nakagawa, K. Obara, O. Ishikawa, and T. Hata, in Proceedings of the 24th International Conference on Low Temperature Physics, S. P. Hershfield, S. O. Hill, P. J. Hirschfeld, and Y. Takano, (eds.), AIP, New York (2006), pp. 195–198.Google Scholar
  45. 45.
    Tsubota M., Araki T., Nemirovskii S.K. (2000). J. Low Temp. Phys. 119, 337CrossRefGoogle Scholar
  46. 46.
    Vinen W.F., Tsubota M., Mitani A. (2004). J. Low Temp. Phys. 134, 457CrossRefADSGoogle Scholar
  47. 47.
    Kobayashi M., Tsubota M. (2005). Phys. Rev. Lett. 94:065302CrossRefADSGoogle Scholar
  48. 48.
    S.-C. Liu, G. Labbe, and G. G. Ihas, J. Low Temp. Phys. in this volume (2006).Google Scholar
  49. 49.
    P. M. Walmsley, A. A. Levchenko, and A. I. Golov, J. Low Temp. Phys. in this volume (2006).Google Scholar
  50. 50.
    P. M. Walmsley, A. A. Levchenko, S. May, L. Chan, H. E. Hall, and A. I. Golov, Proc. Conf. on Quantum Phenomena at Low Temperature, Lammi Biological Station, Finland (2006).Google Scholar
  51. 51.
    Samuels C.C., Barenghi C.F. (1998). Phys. Rev. Lett. 81:4381CrossRefADSGoogle Scholar
  52. 52.
    Vinen W.F. (2001). J. Low Temp. Phys. 124, 101CrossRefGoogle Scholar
  53. 53.
    Mitin V., McFarland J., Ihas G.G., Dugaev V. (2000). Physica B, 284, 1996CrossRefADSGoogle Scholar
  54. 54.
    Dugaev V.K., McKenney C., Nemish I.Y., Kholevchuk V.V., Soloviev E.A., Ihas G.G., Mitin V.F., Vieira M. (2002) Proceeding of the IEEE Sensors. IEEE, New York, pp. 1275–1276CrossRefGoogle Scholar
  55. 55.
    Vinen W.F. (2000). Phys. Rev. B 61:1410CrossRefADSGoogle Scholar
  56. 56.
    Vinen W.F. (2001). Phys. Rev. B 64:134520CrossRefADSGoogle Scholar
  57. 57.
    Kozik E., Svistunov B.V. (2005). Phys. Rev. B 72:172505CrossRefADSGoogle Scholar
  58. 58.
    Zhang T., Van Sciver S.W. (2005). J. Low Temp. Phys. 138, 865CrossRefADSGoogle Scholar
  59. 59.
    Bewley G.P., Lathrop D.P., Sreenivasanan K.R. (2006). Nature 441, 588CrossRefADSGoogle Scholar
  60. 60.
    Poole D.R., Barenghi C.F., Sergeev Y.A., Vinen W.F. (2005). Phys. Rev. B 71:064514CrossRefADSGoogle Scholar
  61. 61.
    W. F. Vinen, in Proceeding of the 24th International Conference on Low Temperature Physics, S. P. Hershfield, S. O. Hill, P. J. Hirschfeld, and Y. Takano, (eds.), AIP, New York (2006), pp. 169–172.Google Scholar
  62. 62.
    McKinsey D.N., Lippincott W.H., Nikkel J.A., Rellergert W.G. (2005). Phys. Rev. Lett. 95:111101CrossRefADSGoogle Scholar
  63. 63.
    W. F. Vinen, R. Hänninen, and M. Tsubota, Proc. Conf. on Quantum Phenomena at Low Temperature, Lammi Biological Station, Finland April (2006).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • D. Charalambous
    • 1
    • 2
  • P. C. Hendry
    • 1
  • M. Holmes
    • 1
  • G. G. Ihas
    • 1
    • 3
  • P. V. E. McClintock
    • 1
  • L. Skrbek
    • 1
    • 4
  1. 1.Department of PhysicsLancaster UniversityLancasterUK
  2. 2.Meteorological Service, Ministry of Agriculture, Natural Resources and EnvironmentNicosiaCyprus
  3. 3.Department of PhysicsUniversity of FloridaGainesvilleUSA
  4. 4.Faculty of Mathematics and Physics, Joint Low Temperature Laboratory, Institute of Physics ASCRCharles UniversityPragueCzech Republic

Personalised recommendations