Journal of Low Temperature Physics

, Volume 143, Issue 3–4, pp 55–114 | Cite as

H-Solid State NMR Studies of Tunneling Phenomena and Isotope Effects in Transition Metal Dihydrides

  • Gerd Buntkowsky
  • Hans-Heinrich Limbach

In many transition metal dihydrides and dihydrogen complexes the hydrogens are relatively weakly bound and exhibit a fairly high mobility, in particular with respect to their mutual exchange. Part of this high mobility is due to the exchange symmetry of the two hydrogens, which causes an energy splitting into even and odd spatial energy eigenfunctions, resulting in the typical coherent tunneling of a two-level system. Owing to the quantum mechanical symmetry selection principles the eigenfunctions are connected to the possible nuclear spin states of the system. If the tunneling frequency is in the proper frequency window it is thus possible to observe these tunneling transitions by NMR at very low temperatures, where no thermally induced exchange reactions overshadow the tunneling. The first part of this review gives an introduction into the interplay of chemical kinetics and tunneling phenomena in general, rotational tunneling of dihydrogen in a two-fold potential in particular and the Bell tunnel model, followed by a summary of solid state NMR techniques for the observation of these tunnel processes. Then a discussion of the effects of these processes on the 2H NMR line shape is given. The second part of the review reports results of a 2H-solid state NMR spectroscopy and T1 relaxatiometry study of trans-[Ru(D2)Cl(PPh2CH2CH2PPh2)2]PF6, in the temperature regime from 5.4 to 320 K. In the Ru-D2 sample coherent tunneling and incoherent exchange processes on the time scale of the quadrupolar interaction are observed. From the spectra and T1-data the height of the tunneling barrier is determined. Next results of 2H-spin–lattice relaxation measurements for a selectively η2 − D2 labeled isotopomer of the complex W(PCy3)2(CO)3)(η2 − D2) are presented and discussed. The relaxation measurements are analyzed in terms of a simple one dimensional Bell tunnel model and comparison to incoherent neutron scattering (INS) data from the H2 complex. The comparison reveals a strong isotope effect of 2 × 103 for the exchange rates of the deuterons versus hydrons.


Solid state NMR tunneling quantum coupling dihydrogen complex 2H-NMR dipolar interactions quadrupoler interactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aebischer N, Frey U, and Merbach A.E, Chem. Comm. 2303 (1998).Google Scholar
  2. 2.
    Albertin G, Antoniutti S, Garciafontan S, Carballo R, and Padoan F, J. Chem. Soc., Dalton Trans. 2071 (1998).Google Scholar
  3. 3.
    Alkorta I, Rozas I, Elguero J, (1998). Chem. Soc. Rev. 27, 163CrossRefGoogle Scholar
  4. 4.
    Bakhmutov V.I, (1998). Inorg. Chem. 37, 279CrossRefGoogle Scholar
  5. 5.
    Bartucz T.Y, Golombek A, Lough A.J, Maltby P.A, Morris R.H, Ramachandran R, Schlaf M, (1998). Inorg. Chem. 37: 1555CrossRefGoogle Scholar
  6. 6.
    Basallote M.G, Duran J, M. J. Fernandez-Trujillo, and Manez M.A, J. Chem. Soc., DaltonTrans, 2205 (1998).Google Scholar
  7. 7.
    Bohanna C, Callejas B, Edwards A.J, Esteruelas M.A, Lahoz F.J, Oro L.A, Ruiz N, and Valero C, Organometallics 373 (1998).Google Scholar
  8. 8.
    Buntkowsky G, Limbach H.-H., Wehrmann F, Sack I, Vieth H.M, Morris R.H, (1997). J. Phys. Chem. A 101: 4679CrossRefGoogle Scholar
  9. 9.
    Chaudret B, (1998). Coord. Chem. Rev. 180, 381CrossRefGoogle Scholar
  10. 10.
    Cooper A.C, Caulton K.G, (1998). Inorg. Chem. 37: 5938CrossRefGoogle Scholar
  11. 11.
    Crabtree R.H, (1998). J. Organomet. Chem. 557, 111CrossRefGoogle Scholar
  12. 12.
    Esteruelas M.A, Oro L.A, (1998). Chem. Rev. 98, 577CrossRefGoogle Scholar
  13. 13.
    Gelabert R, Moreno M, Lluch J.M, Lledos A, (1998). J. Am. Chem. Soc. 120: 8168CrossRefGoogle Scholar
  14. 14.
    S. Gründemann, H.-H. Limbach, Rodriguez V, Donnadieu B, Sabo-Etienne S., Chaudret B, (1998). Ber. Bunsenges. Phys. Chem. 102, 344Google Scholar
  15. 15.
    Hasegawa T, Li Z.W, and Taube H, Chem. Lett. 7 (1998).Google Scholar
  16. 16.
    Limbach H.-H., Ulrich S, Gründemann S., Buntkowsky G, Sabo-Etienne S., Chaudret B, Kubas G.J, Eckert J, (1998). J. Am. Chem. Soc. 120: 7929CrossRefGoogle Scholar
  17. 17.
    Macfarlane K.S, Thorburn I.S, Cyr P.W, Chau D, Rettig S.J, James B.R, (1998). Inorg. Chim. Acta. 270, 130CrossRefGoogle Scholar
  18. 18.
    Ng W.S, Jia G.C, Huang M.Y, Lau C.P, Wong K.Y, Wen L.B, (1998). Organometallics 17: 4556CrossRefGoogle Scholar
  19. 19.
    Popelier P.L.A., (1998). J. Phys. Chem. A 102: 1873CrossRefGoogle Scholar
  20. 20.
    Sabo-Etienne S., Chaudret B, (1998). Chem. Rev. 98: 2077CrossRefGoogle Scholar
  21. 21.
    Stahl S.S, Labinger J.A, Bercaw J.E, (1998). Inorg. Chem. 37: 2422CrossRefGoogle Scholar
  22. 22.
    Kubas G.J, Ryan R.R, Swanson B.I, Vergamini P.J, Wasserman H.J, (1984). J. Am. Chem. Soc. 116, 451CrossRefGoogle Scholar
  23. 23.
    Kubas G.J, (1988). J. Acc. Chem. Res. 21, 120CrossRefGoogle Scholar
  24. 24.
    Jessop P.G, Morris R.H, (1992). Coord. Chem. Rev. 121, 155CrossRefGoogle Scholar
  25. 25.
    Heinekey D.M, Oldham W.J, (1993). J. Chem. Rev. 93, 913CrossRefGoogle Scholar
  26. 26.
    Luther T.A, Heinekey D.M, (1998). Inorg. Chem. 37, 127CrossRefGoogle Scholar
  27. 27.
    Toupadakis A, Kubas G.J, King W.A, Scott L.B, Huhmann-Vincent J., (1998). Organometallics 17: 5315CrossRefGoogle Scholar
  28. 28.
    Maltby P.A, Steinbeck M, Lough A.J, Morris R.H, Klooster W.T, Koetzle T.F, Srivastava R.C, (1996). J. Am. Chem. Soc. 118: 5396CrossRefGoogle Scholar
  29. 29.
    Niu S.Q, Thomson L.M, Hall M.B, (1998). J. Am. Chem. Soc. 121: 4000CrossRefGoogle Scholar
  30. 30.
    Cucullu M.E, Nolan S.P, Belderrain T.R, Grubbs R.H, (1998). Organometallics 17: 1299CrossRefGoogle Scholar
  31. 31.
    Lough A.J, Morris R.H, Ricciuto L, Schleis T, (1998). Inorg. Chim. Acta 270, 238CrossRefGoogle Scholar
  32. 32.
    Matthes J, Grundemann S, Toner A, Guari Y, Donnadieu B, Spandl J, Sabo-Etienne S., Clot E, Limbach H.H, Chaudret B, (2004). Organometallics 23: 1424CrossRefGoogle Scholar
  33. 33.
    Maseras F, Lledos A, Clot E, Eisenstein O, (2000). Chem. Rev. 100, 601CrossRefGoogle Scholar
  34. 34.
    Macchioni A, (2005). Chem. Rev. 105: 2039CrossRefGoogle Scholar
  35. 35.
    Lachaize S, Essalah W, V. Montiel-Palma, Vendier L, Chaudret B., Barthelat J.C, Sabo-Etienne S., (2005). Organometallics 24: 2935CrossRefGoogle Scholar
  36. 36.
    Limbach H.H, Scherer G, Maurer M, (1992). Angew. Chem. 104: 1414Google Scholar
  37. 37.
    Limbach H.H, Scherer G, Maurer M, Chaudret B, (1990). Angew. Chem., Int. Ed. Engl. 31: 1369CrossRefGoogle Scholar
  38. 38.
    Limbach H.H, Scherer G, Meschede L, F. Aguilar-Parrilla, Wehrle B, Braun J, Hoelger C, Benedict H, Buntkowsky G, Fehlhammer W.P, Elguero J, J. A. S. Smith, and Chaudret B, in Ultrafast Reaction Dynamics and Solvent Effects, Experimental and Theoretical Aspects, Y.Gauduel, and P.J.Rossky, (eds.), American Inst. of Physics. (1993), P. 225.Google Scholar
  39. 39.
    Wehrmann F, Fong T, Morris R.H, Limbach H.-H., Buntkowsky G, (1999). Phys. Chem. Chem. Phys. 1: 4033CrossRefGoogle Scholar
  40. 40.
    Wehrmann F, Albrecht J, Gedat E, Kubas G.J, Limbach H.H, Buntkowsky G, (2002). J. Phys. Chem. A 106: 2855CrossRefGoogle Scholar
  41. 41.
    Eckert J, Kubas G.J, (1993). J. Phys. Chem. 97: 2378CrossRefGoogle Scholar
  42. 42.
    Arliguie T, Chaudret B, Devillers J, Poilblanc R, (1987). C.R. Acad. Sci. Paris, Serie I 305, 1523Google Scholar
  43. 43.
    Heinekey D.M, Payne N.G, Schulte G.K, (1988). J. Am. Chem. Soc. 110: 2303CrossRefGoogle Scholar
  44. 44.
    Heinekey D.M, Millar J.M, Koetzle T.F, Payne N.G, Zilm K.W, (1990). J. Am. Chem. Soc. 112, 909CrossRefGoogle Scholar
  45. 45.
    Zilm K.W, Heinekey D.M, Millar J.M, Payne N.G, Demou P, (1989). J. Am. Chem. Soc. 111: 3088CrossRefGoogle Scholar
  46. 46.
    Jones D, Labinger J.A, Weitekamp J, (1989). J. Am. Chem. Soc. 111: 3087CrossRefGoogle Scholar
  47. 47.
    Inati S.J, Zilm K.W, (1992). Phys. Rev. Lett. 68: 3273CrossRefADSGoogle Scholar
  48. 48.
    Bautista M.T, Earl K.A, Maltby P.A, Morris R.H, Schweitzer C.T, Sella A, (1988). J. Am. Chem. Soc. 110: 7031CrossRefGoogle Scholar
  49. 49.
    Facey G.A, Fong T.P, Gusev D.G, MacDonald P.M, Morris R.H, Schlaf M, and Xu W, Can. J. Chem. 1899–1910 (1999).Google Scholar
  50. 50.
    Buntkowsky G, Bargon J, H.-H. Limbach, (1996). J. Am. Chem. Soc. 118, 867CrossRefGoogle Scholar
  51. 51.
    Alexander S, (1962). J. Chem. Phys. 37, 971Google Scholar
  52. 52.
    Binsch G, (1969). J. Am. Chem. Soc. 91: 1304CrossRefGoogle Scholar
  53. 53.
    Kleier D.A, Binsch G, (1970). J. Magn. Res. 3, 146Google Scholar
  54. 54.
    Szymanski S, (1996). J. Chem. Phys. 104: 8216CrossRefADSGoogle Scholar
  55. 55.
    Szymanski S, (1998). Annu. Rep. NMR Spectrosc. 35, 794Google Scholar
  56. 56.
    Scheurer C, ETH Zürich, Zürich (1998).Google Scholar
  57. 57.
    Scheurer C, Wiedenbruch R, Meyer R, Ernst R.R, Heinekey D.M, (1997). J. Chem. Phys. 106, 1CrossRefADSGoogle Scholar
  58. 58.
    Wu W, Noble D.L, Owers-Bradley J. R., Horsewill A.J, (2005). J. Magn. Reson. 175, 210CrossRefGoogle Scholar
  59. 59.
    Xue Q, Horsewill A.J, Johnson M.R, Trommsdorff H.P, (2004). J. Chem. Phys. 120: 11107CrossRefADSGoogle Scholar
  60. 60.
    Nair S, Dimeo R.M, Neumann D.A, Horsewill A.J, Tsapatsis M, (2004). J. Chem. Phys. 121: 4810CrossRefADSGoogle Scholar
  61. 61.
    Jenkinson R.I, Ikram A, Horsewill A.J, Trommsdorff H.P, (2003). Chem. Phys. 294, 95CrossRefGoogle Scholar
  62. 62.
    Horsewill A.J, McGloin C.J, Trommsdorff H.P, Johnson M.R, (2003). Chem. Phys. 291, 41CrossRefGoogle Scholar
  63. 63.
    Johnson M.R, Jones N.H, Geis A, Horsewill A.J, Trommsdorff H.P, (2002). J. Chem. Phys. 116: 5694CrossRefADSGoogle Scholar
  64. 64.
    Horsewill A.J, Xue Q, (2002). Phys. Chem. Chem. Phys. 4: 5475CrossRefGoogle Scholar
  65. 65.
    Horsewill A.J, Jones N.H, Caciuffo R, (2002). Science 298: 1171CrossRefGoogle Scholar
  66. 66.
    Horsewill A.J, Jones N.H, Caciuffo R, (2001). Science 291, 100CrossRefADSGoogle Scholar
  67. 67.
    Pake G.E, (1948). J. Chem. Phys. 16, 327CrossRefGoogle Scholar
  68. 68.
    Gedat E, Schreiber A, Albrecht J, Shenderovich I, Findenegg G, Limbach H.-H., Buntkowsky G, (2002). J. Phys. Chem. B. 106: 1977CrossRefGoogle Scholar
  69. 69.
    Masierak W, Emmler T, Gedat E, Schreiber A, Findenegg G.H, and Buntkowsky G, J. Phys. Chem. B 18890 (2004).Google Scholar
  70. 70.
    Schmidt-Rohr K., Spiess H.W, (1994). Multidimensional Solid State NMR and Polymers. Academic Press, LondonGoogle Scholar
  71. 71.
    Roessler E, Taupitz M, Vieth H.M, (1989). Ber. Bunsengesellschaft 93: 1241Google Scholar
  72. 72.
    Bernhard T, Haeberlen U, (1991). Chem. Phys. Lett. 186, 307CrossRefADSGoogle Scholar
  73. 73.
    Detken A, Focke P, Zimmermann H, Haeberlen U, Olejniczak Z, Lalowicz Z.T, (1995). Z. Naturforsch 50a: 95Google Scholar
  74. 74.
    Detken A, Zimmermann H, (1998). J. Chem. Phys. 108: 5845CrossRefADSGoogle Scholar
  75. 75.
    Clough S, Horsewill A.J, Paley M.N.J., (1981). Phys. Rev. Lett. 46, 71CrossRefADSGoogle Scholar
  76. 76.
    Clough S, Horsewill A.J, (1982). Phys. Rev. B 25: 4911CrossRefADSGoogle Scholar
  77. 77.
    Clough S, Horsewill A.J, Mcdonald P.J, Zelaya F.O, (1985). Phys. Rev. Lett. 55: 1794CrossRefADSGoogle Scholar
  78. 78.
    Heidemann A, Clough S, Mcdonald P.J, Horsewill A.J, Neumaier K, (1985). Zeitschrift Fur Physik B-Condensed Matter 58, 141CrossRefGoogle Scholar
  79. 79.
    Mcdonald P.J, Barker G.J, Clough S, Green R.M, Horsewill A.J, (1986). Mol. Phys. 57, 901CrossRefGoogle Scholar
  80. 80.
    Horsewill A.J, Alsanoosi A.M, Carlile C.J, (1987). J. Phys. C-Solid State Phys. 20: L869CrossRefADSGoogle Scholar
  81. 81.
    Lalowicz Z.T, Punkkinen M, Olejniczak Z, Birczytiski A, Haeberlen U, (2002). Solid State Nuclear Magnet. Reson. 22, 373CrossRefGoogle Scholar
  82. 82.
    Olejniczak Z, Lalowicz Z.T, Schmidt T, Zimmermann H, Haeberlen U, Schmitt H, (2002). J. Chem. Phys. 116: 10343CrossRefADSGoogle Scholar
  83. 83.
    Schmidt T, Schmitt H, Haeberlen U, Z. Olejniczak, Lalowicz Z.T, (2002). J. Chem. Phys. 117: 9818CrossRefADSGoogle Scholar
  84. 84.
    Cohen-Tannoudji C., Diu B, Laloe F, (1977). Mechanique Quantique. Hermann Editeurs, ParisGoogle Scholar
  85. 85.
    Szymanski S, Bernatowicz P, (2005). Ann. Rep. NMR Spectroscopy 54, 1CrossRefGoogle Scholar
  86. 86.
    Bell R.B, (1980). The Tunnel Efect in Chemistry. Chapman & Hall, London & NYGoogle Scholar
  87. 87.
    Abragam A, Principles of Nuclear Magnetism, Clarendon Press Oxford (1961).Google Scholar
  88. 88.
    Slichter C.P, (1990). Principles of Magnetic Resonance 3rd Edition. Springer Verlag Berlin, Heidelberg New YorkGoogle Scholar
  89. 89.
    Ernst R, Bodenhausen G, Wokaun A, (1987). Principles of NMR in One and Two Dimensions. Clarendon Press, OxfordGoogle Scholar
  90. 90.
    Mansfield P, Morris P.G, (1982). NMR Imaging in Biomedicine. Academic Press, New YorkGoogle Scholar
  91. 91.
    Callaghan P.T, (1991). Principles of Nuclear Magnetic Resonance Microscopy. Clarendon Press, OxfordGoogle Scholar
  92. 92.
    Kimmich R,, (1997). NMR Tomography Diffusometry Relaxometry. Springer, BerlinGoogle Scholar
  93. 93.
    Mehring M, (1983). High Resolution NMR Spectroscopy in Solids. Springer Verlag, Berlin, Heidelberg New YorkGoogle Scholar
  94. 94.
    Rose M.E, (1957). Elementary Theory of Angular Momentum. Wiley, New YorkzbMATHGoogle Scholar
  95. 95.
    Gullion T, Schaefer J, (1989). J. Magn. Res. 81, 196Google Scholar
  96. 96.
    Bennett A.E, Griffin R.G, Vega S, (1994). Springer Series in NMR 33, 1Google Scholar
  97. 97.
    King W.A, Luo X.L, Scott B.L, Kubas G.J, Zilm K.W, (1996). J. Am. Chem. Soc. 118: 6782CrossRefGoogle Scholar
  98. 98.
    Kubas G.J, Nelson J.E, Bryan J.C, Eckert J, Wisniewski L, Zilm K, (1994). Inorg. Chem. 33: 2954CrossRefGoogle Scholar
  99. 99.
    Facey G, Gusev D, Macholl S, Morris R.H, Buntkowsky G, (2000). Phys. Chem. Chem. Phys. 2, 935CrossRefGoogle Scholar
  100. 100.
    Esteruelas M.A, Lahoz F.J, Onate E, Oro L.A, Valero C, Zeier B, (1995). J. Am. Chem. Soc. 117: 7935CrossRefGoogle Scholar
  101. 101.
    Morris R.H, Wittebort R.J, (1997). Mag. Res. Chem. 35, 243CrossRefGoogle Scholar
  102. 102.
    Bain A.D, (2003). Progess in NMR 43, 63Google Scholar
  103. 103.
    Bakhmutov V.I, (2004). Magn. Reson. Chem. 42, 66CrossRefGoogle Scholar
  104. 104.
    Spiess H.W, in NMR Basic Principles and Progress, Diehl P, Fluck E, and Kosfeld R, (eds.), Springer Verlag, Berlin, 15, 58 (1978).Google Scholar
  105. 105.
    Benz S, Haeberlen U, (1986). J. Magn. Res. 66, 125Google Scholar
  106. 106.
    Heuer A, Haeberlen U, (1991). J. Chem. Phys. 95: 4201CrossRefADSGoogle Scholar
  107. 107.
    Zilm K.W, Merill R.A, Kummer M.W, Kubas G.J, (1986). J. Am. Chem. Soc. 108: 7837CrossRefGoogle Scholar
  108. 108.
    Pery T, Pelzer K, Buntkowsky G, Philippot K, Limbach H.H, Chaudret B, (2005). Chem. Phys. Chem. 6, 605Google Scholar
  109. 109.
    Matthes J, Pery T, Gründemann S., Buntkowsky G, Sabo-Etienne S., Limbach H.H, Chaudret B, (2004). J. Am. Chem. Soc. 126: 8366CrossRefGoogle Scholar
  110. 110.
    Buntkowsky G, Walaszek B, Adamczyk A, Xu Y, Limbach H.-H., Chaudret B, (2006). Phys. Chem. Chem. Phys. 8: 1929CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Physical ChemistryFSU JenaJenaGermany
  2. 2.Department of Physical ChemistryFU BerlinBerlinGermany

Personalised recommendations