Advertisement

Journal of Low Temperature Physics

, Volume 142, Issue 3–4, pp 257–260 | Cite as

Tuning Electronic Ground States by Using Chemical Pressure on Quasi-Two Dimensional β′′-(BEDT-TTF)4[(H3O)M(C2O4)3]·Y

  • A. I. Coldea
  • A. F. Bangura
  • J. Singleton
  • A. Ardavan
  • A. Akutsu-Sato
  • H. Akutsu
  • P. Day
Article

We report high-field magnetotransport studies on quasi-two dimensional β′′-(BEDT-TTF)4[(H3O)M(C2O4)3]· Y where Y is a solvent in the anionic layer. By changing the size of the solvent the low temperatures electronic behaviour varies from superconducting (for larger solvents, Y = C6H5NO2 and C6H5CN) to metallic (for smaller solvents, Y = C5H5N and CH2Cl2). These changes in the ground state are connected with modications of the Fermi surface, which varies from having one or two pockets for the superconducting charge- transfer salts to at least four pockets in the case of metallic ones. When superconducting, the materials have very large in-plane critical fields (up to 32 T) and enhanced effective masses compared with the metallic compounds. The role of the charge-order fluctuations in stabilizing the superconducting ground state and the effects of intrinsic local disorder is discussed.

PACS numbers

74.10.+v 71.18.+y 71.20.Rv 72.15.Gd 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jaime Merino and McKenzie R.H. (2001). Phys. Rev. Lett. 87: 237002CrossRefADSGoogle Scholar
  2. 2.
    Powell B.J. and McKenzie R.H. (2004). Phys. Rev. B 69: 024519CrossRefADSGoogle Scholar
  3. 3.
    Akutsu H., Akutsu-Sato A., Turner S.S., Le Pevelen D., Day P., Laukhin V., Klehe A.-K., Singleton J., Tocher D.A., Probert M.R. and Howard J.A.K. (2002). J. Am. Chem. Soc. 124: 12430CrossRefGoogle Scholar
  4. 4.
    Turner S.S., Day P., Malik K.M.A., Hursthouse M.B., Teat S.J., Maclean E.J., Martin L. and French S.A. (1999). Inorg. Chem. 38: 3543CrossRefGoogle Scholar
  5. 5.
    Coldea A.I., Bangura A.F., Singleton J., Ardavan A., Akutsu-Sato A., Akutsu H., Turner S.S. and Day P. (2004). Phys. Rev. B 69: 085112CrossRefADSGoogle Scholar
  6. 6.
    House A.A., Harrison N., Blundell S.J., Deckers I., Singleton J., Herlach F., Hayes W., Perenboom J.A.A.J., Kurmoo M. and Day P. (1996). Phys. Rev. B 53: 9127CrossRefADSGoogle Scholar
  7. 7.
    Kahlich S., Schweitzer D., Rovira C., Paradis J.A., Whangbo M.H., Heinen I., Keller H.J., Nuber B., Belle P., Brunner H. and Shibaeva R.P. (1999). Z. Phys. B 60: 3060Google Scholar
  8. 8.
    Singleton J. and Mielke C.H. (2002). Contemp Phys. 43: 63CrossRefADSGoogle Scholar
  9. 9.
    Bangura A.F., Coldea A.I., Singleton J., Ardavan A., Akutsu-Sato A., Akutsu H., Turner S.S., Day P., Yamamoto T., Yakushi K. (2005). Phys. Rev. B 72: 014543CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • A. I. Coldea
    • 1
  • A. F. Bangura
    • 1
  • J. Singleton
    • 2
  • A. Ardavan
    • 1
  • A. Akutsu-Sato
    • 3
  • H. Akutsu
    • 4
  • P. Day
    • 5
  1. 1.Clarendon LaboratoryUniversity of OxfordOxfordUK
  2. 2.NHMFLLos Alamos National LaboratoryLos AlamosUSA
  3. 3.Research Centre for Spectrochemistry, Graduate School of ScienceThe University of TokyoTokyoJapan
  4. 4.Department of Material Science, Graduate School and Faculty of ScienceHimeji Institute of TechnologyHyogoJapan
  5. 5.Davy-Faraday Research LaboratoryThe Royal InstitutionLondonUK

Personalised recommendations