Journal of Low Temperature Physics

, Volume 142, Issue 3–4, pp 283–288 | Cite as

Frustration Effects in Magnetic Molecules

  • Jürgen Schnack
Article

Besides being a fascinating class of new materials, magnetic molecules provide the opportunity to study concepts of condensed matter physics in zero dimensions. This contribution will exemplify the impact of molecular magnetism on concepts of frustrated spin systems. We will discuss spin rings and the unexpected rules that govern their low-energy behavior. Rotational bands, which are experimentally observed in various molecular magnets, provide a useful, simplified framework for characterizing the energy spectrum, but there are also deviations thereof with far-reaching consequences. It will be shown that localized independent magnons on certain frustrated spin systems lead to giant magnetization jumps, a new macroscopic quantum effect. In addition a frustration-induced metamagnetic phase transitions will be discussed, which demonstrates that hysteresis can exist without anisotropy. Finally, it is demonstrated that frustrated magnetic molecules could give rise to an enhanced magnetocaloric effect.

PACS numbers

75.50.Xx 75.10.Jm 75.40.Cx 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Greedan J. (2001). J. Mater. Chem. 11:37CrossRefGoogle Scholar
  2. 2.
    Müller A. et al. (2001). Chem. Phys. Chem. 2:517Google Scholar
  3. 3.
    Marshall W. (1955). Proc. Royal Soc. A (London) 232:48MATHADSCrossRefGoogle Scholar
  4. 4.
    Lieb E.H., Schultz T., Mattis D.C. (1961). Ann. Phys. (N.Y.) 16:407MATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Lieb E.H., Mattis D.C. (1962). J. Math. Phys. 3:749MATHCrossRefADSGoogle Scholar
  6. 6.
    K. Bärwinkel, P. Hage, H.-J. Schmidt, and J. Schnack, Phys. Rev. B 68, 054422 (2003).Google Scholar
  7. 7.
    M. Karbach, Ph.D. thesis, Bergische Universität - Gesamthochschule Wuppertal, 1994.Google Scholar
  8. 8.
    Affleck I., Gepner D., Schulz H., Ziman T. (1989). J. Phys. A 22:511CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Anderson P.W. (1952). Phys. Rev. 86:694MATHCrossRefADSGoogle Scholar
  10. 10.
    J. Schnack and M. Luban, Phys. Rev. B 63, 014418 (2001).Google Scholar
  11. 11.
    O. Waldmann et al., Phys. Rev. Lett. 91, 237202 (2003).Google Scholar
  12. 12.
    Schnack J., Schmidt H.-J., Richter J., Schulenburg J. (2001). Eur. Phys. J. B 24:475CrossRefADSGoogle Scholar
  13. 13.
    J. Schulenburg et al. Phys. Rev. Lett. 88, 167207 (2002).Google Scholar
  14. 14.
    Richter J. et al. (2004). J. Phys.: Condens. Matter 16:S779CrossRefADSGoogle Scholar
  15. 15.
    C. Schröder et al., Phys. Rev. Lett. 94, 207203 (2005).Google Scholar
  16. 16.
    M. E. Zhitomirsky and A. Honecker, J. Stat. Mech.: Theor. Exp. 2004, P07012 (2004).Google Scholar
  17. 17.
    O. Derzhko and J. Richter, Phys. Rev. B 70, 104415 (2004).Google Scholar
  18. 18.
    J. Schnack, R. Schmidt, and J. Richter, in preparation.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Jürgen Schnack
    • 1
  1. 1.Fachbereich PhysikUniversität OsnabrückOsnabrückGermany

Personalised recommendations