Journal of Low Temperature Physics

, Volume 140, Issue 3–4, pp 211–226 | Cite as

Path-Integral Quantum Monte Carlo Techniques for Self-Assembled Quantum Dots

  • Matthew Harowitz
  • Daejin Shin
  • John Shumway
Original Article

Abstract

We have developed a set of path integral quantum Monte Carlo techniques for studying self-assembled quantum dots. The simulations can be run in two or three dimensions, with a variety of different effective mass models. Our most realistic simulations start from an atomistic model of dot shape, size, and composition, then compute strain-modified band offsets to use as input for the path integral algorithms. We have studied charge distributions and total energies for different numbers of electrons and holes in a variety of InGaAs/GaAs quantum dots. New techniques allow us to apply external electronic and magnetic fields. We have also gone beyond the parabolic band approximation by including an energy-dependent effective mass (in mathematical analogy to relativistic kinetic energy). Finally, we describe a path-integral method for calculating the degree to which biexcitonic correlation suppresses radiative recombination rates.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. P. M. Petroff and S. P. DenBaars, Superlattices and Microstructures 15, 15 (1994).CrossRefGoogle Scholar
  2. 2.
    2. L. Jacak, A. Wójs, and P. Harylack, Quantum Dots, Spinger-Verlag, Berlin, 1998.Google Scholar
  3. 3.
    3. P. Hawrylak and D. Pfannkuche, Phys. Rev. Lett. 70, 485 (1993).CrossRefPubMedGoogle Scholar
  4. 4.
    4. A. Wójs, P. Hawrylak, S. Fafard, and L. Jacak, Phys. Rev. B 54, 5604 (1996).CrossRefGoogle Scholar
  5. 5.
    5. E. Dekel, D. Gershoni, E. Ehrenfreund, J. Garcia, and P. Petroff, Phys. Rev. B 61, 11009 (2000).CrossRefGoogle Scholar
  6. 6.
    6. R. M. Thompson et al., Phys. Rev. B 64, 201302 (2001).CrossRefGoogle Scholar
  7. 7.
    7. C. Santori, G. S. Solomon, M. Pelton, and Y. Yamamoto, Phys. Rev. B 65, 073310 (2002).CrossRefGoogle Scholar
  8. 8.
    8. M. Bayer et al., Science 291, 451 (2001).CrossRefPubMedGoogle Scholar
  9. 9.
    9. G. Bester, J. Shumway, and A. Zunger, Phys. Rev. Lett. 93, 047401 (2004).CrossRefPubMedGoogle Scholar
  10. 10.
    10. J. Shumway, A. Franceschetti, and A. Zunger, Phys. Rev. B 63, 155316 (2001).CrossRefGoogle Scholar
  11. 11.
    11. S. Raymond et al., Phys. Rev. B 58, R13415 (1998).CrossRefGoogle Scholar
  12. 12.
    12. R. C. Ashoori et al., Phys. Rev. Lett. 71, 613 (1993).CrossRefPubMedGoogle Scholar
  13. 13.
    13. S. Raymond et al., Solid State Comm. 101, 883 (1997).CrossRefGoogle Scholar
  14. 14.
    14. R. P. Feynman, Statistical Mechanics, Addison-Wesley, Reading, MA, 1972.Google Scholar
  15. 15.
    15. D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).CrossRefGoogle Scholar
  16. 16.
    16. Y. Z. Hu et al., Phys. Rev. Lett. 64, 1805 (1990).CrossRefPubMedGoogle Scholar
  17. 17.
    17. E. L. Pollock and S. W. Koch, J. Chem. Phys. 94, 6776 (1991).CrossRefGoogle Scholar
  18. 18.
    18. F. Bolton, Phys. Rev. B 54, 4780 (1996).CrossRefGoogle Scholar
  19. 19.
    19. E. Lee, A. Puzder, M. Y. Chou, T. Uzer, and D. Farrelly, Phys. Rev. B 57, 12281 (1998).CrossRefGoogle Scholar
  20. 20.
    20. J. Shumway, L. R. C. Fonseca, J. P. Leburton, R. M. Martin, and D. M. Ceperley, Physica E 8, 260 (2000).Google Scholar
  21. 21.
    21. F. Luczak, F. Brosens, J. T. Devreese, and L. F. Lemmens, Phys. Stat. Sol. (b) 225, 413 (2001).CrossRefGoogle Scholar
  22. 22.
    22. J. Harting, O. Mülken, and P. Borrmann, Phys. Rev. B 62, 10207 (2000). CrossRefGoogle Scholar
  23. 23.
    23. Open-source codes, documentation, and other information are avialable online at http://physics.asu.edu/shumway/codes/.Google Scholar
  24. 24.
    24. I. N. Stranski and V. L. Krastanow, Akad. Wiss. Lit. Mainz Math.-Natur. Kl. IIb 146, 797 (1939).Google Scholar
  25. 25.
    25. D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990).CrossRefPubMedGoogle Scholar
  26. 26.
    26. O. Brandt et al., Phys. Rev. B 45, 8443 (1992).CrossRefGoogle Scholar
  27. 27.
    27. J. Shumway et al., Phys. Rev. B 64, 125302 (2001).CrossRefGoogle Scholar
  28. 28.
    28. P. N. Keating, Phys. Rev 145, 637 (1966).CrossRefGoogle Scholar
  29. 29.
    29. M. Grundmann, O. Stier, and D. Bimberg, Phys. Rev. B 52, 11969 (1995).CrossRefGoogle Scholar
  30. 30.
    30. L. R. C. Fonseca, J. L. Jimenez, J. P. Leburton, and R. M. Martin, Phys. Rev. B 57, 4017 (1998).CrossRefGoogle Scholar
  31. 31.
    31. A. J. Williamson and A. Zunger, Phys. Rev. B 61, 1978 (2000).CrossRefGoogle Scholar
  32. 32.
    32. S. Lee, L. Jönsson, J. W. Wilkins, G. W. Bryant, and G. Klimeck, Phys. Rev. B 63, 235307 (2002).CrossRefGoogle Scholar
  33. 33.
    33. J. M. Luttinger, Phys. Rev 102, 1030 (1956).CrossRefGoogle Scholar
  34. 34.
    34. J. Shumway, “A quantum Monte Carlo method for non-parabolic electron bands in semiconductor heterostructures,” submitted to J. Phys.: Condens. Matter, 2005.Google Scholar
  35. 35.
    35. P. W. Fry et al., Phys. Rev. Lett. 84, 733 (2000).CrossRefPubMedGoogle Scholar
  36. 36.
    36. P. W. Fry et al., Phys. Rev. B 62, 16784 (2000).CrossRefGoogle Scholar
  37. 37.
    37. E. Dekel et al., Phys. Rev. Lett. 80, 4991 (1998).CrossRefGoogle Scholar
  38. 38.
    38. A. Zrenner, J. Chem. Phys. 112, 7790 (2000).CrossRefGoogle Scholar
  39. 39.
    39. M. Harowitz and J. Shumway, “Stark shifts of excitons and biexcitons in quantum dots,” in preparation for submission to Phys. Rev. B. 2005.Google Scholar
  40. 40.
    40. V. Fock, Z. Phy. 47, 446 (1928).CrossRefGoogle Scholar
  41. 41.
    41. D. G. Darwin, Proc. Cambridge Philos. Soc. 27, 86 (1930).Google Scholar
  42. 42.
    42. S. A. Mikhailov and N. A. Savostianova, Phys. Rev. B 66, 033307 (2002).CrossRefGoogle Scholar
  43. 43.
    43. M. B. Tavernier et al., Phys. Rev. B 68, 205305:1 (2003).CrossRefGoogle Scholar
  44. 44.
    44. M. Ferconi and G. Vignale, Phys. Rev. B 50, 14722 (1994).CrossRefGoogle Scholar
  45. 45.
    45. G. Ortiz, D. M. Ceperley, and R. M. Martin, Phys. Rev. Lett. 71, 2777 (1993).CrossRefPubMedGoogle Scholar
  46. 46.
    46. D. Shin and J. Shumway, “Density-matrix-based fixed-phase approximation for quantum Monte Carlo simulations,” in preparation, 2005.Google Scholar
  47. 47.
    47. D. M. Ceperley, Phys. Rev. Lett. 69, 331 (1992).CrossRefPubMedGoogle Scholar
  48. 48.
    48. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover Publications, Inc., New York, 1970.Google Scholar
  49. 49.
    49. E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).CrossRefGoogle Scholar
  50. 50.
    50. G. Bacher et al., Phys. Rev. Lett. 83, 4417 (1999).CrossRefGoogle Scholar
  51. 51.
    51. M. Wimmer, J. Shumway, and S. V. Nair, (2005), in preparation for submission to Phys. Rev. B.Google Scholar
  52. 52.
    52. S. Corni, M. Braskén, M. Lindberg, J. Olsen, and D. Sundholm, Phys. Rev. B 67, 045313 (2003).CrossRefGoogle Scholar
  53. 53.
    53. J. Shumway and D. M. Ceperley, Phys. Rev. B 63, 165209 (2001).CrossRefGoogle Scholar
  54. 54.
    54. J. Shumway and D. M. Ceperley, Solid State Comm. 134, 19 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Matthew Harowitz
    • 1
  • Daejin Shin
    • 1
  • John Shumway
    • 1
  1. 1.Department of Physics and AstronomyArizona State UniversityTempeUSA

Personalised recommendations