Journal of Low Temperature Physics

, Volume 140, Issue 1–2, pp 119–174 | Cite as

Magnetic Quantum Tunneling in the Single-Molecule Magnet Mn12-Acetate

  • E. del Barco
  • A. D. Kent
  • S. Hill
  • J. M. North
  • N. S. Dalal
  • E. M. Rumberger
  • D. N. Hendrickson
  • N. Chakov
  • G. Christou


The symmetry of magnetic quantum tunneling (MQT) in the single molecule magnet Mn2-acetate has been determined by sensitive low-temperature magnetic measurements in the pure quantum tunneling regime and high frequency EPR spectroscopy in the presence of large transverse magnetic fields. The combined data set definitely establishes the transverse anisotropy terms responsible for the low temperature quantum dynamics. MQT is due to a disorder induced locally varying quadratic transverse anisotropy associated with rhombic distortions in the molecular environment (2nd order in the spin-operators). This is superimposed on a 4th order transverse magnetic anisotropy consistent with the global (average) S4 molecule site symmetry. These forms of the transverse anisotropy are incommensurate, leading to a complex interplay between local and global symmetries, the consequences of which are analyzed in detail. The resulting model explains: (1) the observation of a twofold symmetry of MQT as a function of the angle of the transverse magnetic field when a subset of molecules in a single crystal are studied; (2) the non-monotonic dependence of the tunneling probability on the magnitude of the transverse magnetic field, which is ascribed to an interference (Berry phase)effect; and (3) the angular dependence of EPR absorption peaks, including the fine structure in the peaks, among many other phenomena. This work also establishes the magnitude of the 2nd and 4th order transverse anisotropy terms for Mn12-acetate single crystals and the angle between the hard magnetic anisotropy axes of these terms. EPR as a function of the angle of the field with respect to the easy axes (close to the hard-medium plane) confirms that there are discrete tilts of the molecular magnetic easy axis from the global (average) easy axis of a crystal, also associated with solvent disorder. The latter observation provides a very plausible explanation for the lack of MQT selection rules, which has been a puzzle for many years.


single-molecule magnet quantum tunneling molecular nanomagnet Mn12-Acetate EPR magnetometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van Hemmen L., Suto A., Europhys. Lett. 1, 481 (1986); L. van Hemmen and Suto A., Physica B141, 37 (1986); M. Enz and Schilling R., J. Phys. C19, 1765, L711 (1986); E. Chudnovsky and Gunther L., Phys. Rev. Lett. 60, 661 (1988)Google Scholar
  2. 2.
    Tejada J., Chudnovsky EM., E. del Barco, and Hernandez JM., Nanotechnology 12, 181 (2001); Loss D., Leuenberger M., and DiVincenzo D., Nature 410, 789 (2000)Google Scholar
  3. 3.
    Friedman, JR., Sarachik, MP., Tejada, J., Ziolo, R. 1996Phys. Rev. Lett.763830CrossRefPubMedGoogle Scholar
  4. 4.
    Hernandez, J.M.,  et al. 1996Europhys. Lett.35301Google Scholar
  5. 5.
    Thomas, L., Lionti, F., Ballou, R., Gatteschi, D., Sessoli, R., Barbara, B. 1996Nature (London).383145Google Scholar
  6. 6.
    Sangregorio, C., Ohm, T., Paulsen, C., Sessoli, R., Gatteschi, D. 1997Phys. Rev. Lett.784645Google Scholar
  7. 7.
    Barra, AL., Gatteschi, D., Sessoli, R. 1997Phys. Rev. B.568192Google Scholar
  8. 8.
    Perenboom, J.A.AJ., Brooks, JS., Hill, S., Hathaway, T., Dalal, NS. 1998Phys. Rev. B58330Google Scholar
  9. 9.
    Mertes, K.M.,  et al. 2001Phys. Rev. Lett.87227205PubMedGoogle Scholar
  10. 10.
    Hernandez, JM., Torres, F., Tejada, J., Molins, E. 2002Phys. Rev. B.66161407Google Scholar
  11. 11.
    Bokacheva L., Kent AD., Walters MA., Phys. Rev. Lett. 85, 4803 (2000); A. D. Kent et al., Europhys. Lett. 49, 521 (2000)Google Scholar
  12. 12.
    Mirebeau, I.,  et al. 1999Phys. Rev. Lett.83628Google Scholar
  13. 13.
    Hill, S., Perenboom, J.AA., Dalal, NS., Hathaway, T., Stalcup, T., Brooks, JS. 1998Phys. Rev. Lett.802453Google Scholar
  14. 14.
    Chudnovsky, E.M., Garanin, DA. 2001Phys. Rev. Lett.87187203Google Scholar
  15. 15.
    Chudnovsky, E.M., Garanin, DA. 2002Phys. Rev. B.65094423Google Scholar
  16. 16.
    Cornia, A., Sessoli, R., Sorace, L., Gatteschi, D., Barra, AL. 2002Phys. Rev. Lett.89257201PubMedGoogle Scholar
  17. 17.
    del Barco, E., Kent, AD., Rumberger, EM., Hendrickson, D.N., Christou, G. 2002Europhys. Lett.60768Google Scholar
  18. 18.
    del Barco, E., Kent, AD., Rumberger, EM., Hendrickson, D.N., Christou, G. 2003Phys. Rev. Lett.91047203PubMedGoogle Scholar
  19. 19.
    Hill, S., Edwards, RS., Jones, SI., Dalal, NS., North, JM. 2003Phys. Rev. Lett.90217204PubMedGoogle Scholar
  20. 20.
    Park, K.,  et al. 2002Phys. Rev. B.65014426Google Scholar
  21. 21.
    Hill, S.,  et al. 2002Phys. Rev. B.65224410Google Scholar
  22. 22.
    Amigo, R.,  et al. 2001Phys. Rev. B.65172403Google Scholar
  23. 23.
    Maccagnano, S., Achey, R., Negusse, E., Lussier, A., Mola, MM., Hill, S., Dalal, NS. 2001Polyhedron201441Google Scholar
  24. 24.
    Park, K., Novotny, MA., Dalal, NS., Hill, S., Rikvold, PA. 2002J. Appl. Phys.917167Google Scholar
  25. 25.
    Parks, B., Loomis, J., Rumberger, E., Hendrickson, DN., Christou, G. 2001Phys. Rev. B.64184426Google Scholar
  26. 26.
    Mukhin, A.A.,  et al. 1998Europhys. Lett.44778Google Scholar
  27. 27.
    Takahashi, S., Edwards, RS., North, JM., Hill, S., Dalal, NS. 2004Phys. Rev. B.70094429Google Scholar
  28. 28.
    del Barco, E., Kent, AD., Chakov, N., Christou, G., Hendrickson, DN. 2004Phys. Rev. B.69020411(R)Google Scholar
  29. 29.
    Lis, T. 1980Acta Crystallogr., Sect B: Struct. Crystallogr. Cryst. Chem.362042Google Scholar
  30. 30.
    Christou, G.,  et al. 2000MRS Bull.2566Google Scholar
  31. 31.
    Regnault, N., Jolicœur, , Sessoli, R., Gatteschi, D., Verdaguer, M. 2002Phys. Rev. B66054409Google Scholar
  32. 32.
    Garanin, D., Chudnovsky, EM. 1997Phys. Rev. B.5711102Google Scholar
  33. 33.
    Wernsdorfer, W., Sessoli, R. 1999Science284133PubMedGoogle Scholar
  34. 34.
    Kirman, C., Lawrence, J., Hill, S., Yang, E-C., Hendrickson, DN. 2005J. Appl. Phys.9710M501Google Scholar
  35. 35.
    Park, K., Baruah, T., Bernstein, N., Pederson, MR. 2004Phys. Rev. B.69144426Google Scholar
  36. 36.
    Loss, D., DiVincenzo, D.P., Grinstein, G. 1992Phys, Rev. Lett.693232Google Scholar
  37. 37.
    Garg, A. 1993Europhys. Lett.22205Google Scholar
  38. 38.
    Wernsdorfer, W., Soler, M., Christou, G., Hendrickson, DN. 2002J. Appl. Phys.297164Google Scholar
  39. 39.
    Pederson, MR., Kortus, J., Khanna, SN. 2002J. Appl. Phys.917149Google Scholar
  40. 40.
    Park, C.S., Garg, A. 2002Phys. Rev. B.65064411Google Scholar
  41. 41.
    d-Mn12-acetate was synthesized by following the standard procedure for preparing h-Mn12- acetate, but using D2O and deuterated acetic, CD3COODGoogle Scholar
  42. 42.
    Kent, AD., Molnar, S., Gider, S., Awschalom, DD. 1994J. Appl. Phys.766656Google Scholar
  43. 43.
    Zener C., Proc. R. Soc. London A 137, 696 (1932); Miyashita S., J. Phys. Soc. Jpn. 64, 3207 (1995); V. V. Dobrovitski and Zvezdin AK., Europhys. Lett. 38, 377 (1997); L. Gunther ibid. 39, 1 (1997); G. Rose and P. Stamp CE., J. Low Temp. Phys. 113, 1153 (1998)Google Scholar
  44. 44.
    In the result presented in Ref. 18 the one-fold contribution of this measurement was displaced by 180 degrees. This corresponds to a mistake that was due to the fact that for this experiment we took \(\phi = -180^{\circ}\) (that corresponds to negative orientation of one of the coils of the superconducting vector magnet) as the origin of rotation while for all the others the origin was \(\phi = 0\) (positive orientation of the same coil) and we did not correct it in the dataGoogle Scholar
  45. 45.
    We studied the behavior of the MQT probability with a transverse field applied along the directions of a maximum and a minimum of the twofold MQT probability response because our initial interpretation of the results in Ref. 18 neglected the effect of incommensurate transverse anisotropies and we assumed that those were the directions of the hard and the medium anisotropy axes associated with E( \(S_{x}^{2} - S_{y}^{2}\)). As we explain in this article, these directions, in fact, correspond to medium anisotropy axes of the fourth order anisotropy term and none of them are along the hard anisotropy axes of the second order anisotropy termGoogle Scholar
  46. 46.
    Mola M., Hill S., Goy P., and Gross M., Rev. Sci. Inst. 71, 186 (2000)Google Scholar
  47. 47.
    S. Hill et al., Polyhedron (in press, 2005)Google Scholar
  48. 48.
    The \({\hat O}^{0}_{4}\) Stevens operator has the form \(35{\hat S}^{4}_{z} + [25 - 30S(S + 1)] {\hat S}^{2}_{z}\). Thus, a finite \(B^{0}_{4}\) term results in an additional quadratic contribution to the anisotropy barrier. Consequently, the axial crystal field parameters D (Eq. 1) and D′ (Eq. 21) are inequivalent in situations where B (and, therefore, \(B^{0}_{4}\)) are finite; B and \(B^{0}_{4}\) are inequivalent also. D and D′, as well as B and \(B^{0}_{4}\), also have opposite signs. The appropriate transformation between the two parameter sets are as follows: \(D = (3275 \times B^{0}_{4}) - D^{\prime}\) and \(B = -35 \times B^{0}_{4}\)Google Scholar
  49. 49.
    Pederson, MR., Bernstein, N., Kortus, J. 2002Phys. Rev. Lett.89097202PubMedGoogle Scholar
  50. 50.
    Takahashi, S., Hill, S. 2005Rev. Sci. Inst.76023114Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • E. del Barco
    • 1
    • 6
  • A. D. Kent
    • 1
  • S. Hill
    • 2
  • J. M. North
    • 3
  • N. S. Dalal
    • 3
  • E. M. Rumberger
    • 4
  • D. N. Hendrickson
    • 4
  • N. Chakov
    • 5
  • G. Christou
    • 5
  1. 1.Department of PhysicsNew York UniversityNew YorkUSA
  2. 2.Department of PhysicsUniversity of FloridaGainsvilleUSA
  3. 3.Department of Chemistry and Biochemistry and National High Magnetic Field LaboratoryFlorida State UniversityTallahasseeUSA
  4. 4.Department of Chemistry and BiochemistryUniversity of California San Diego – La JollaUSA
  5. 5.Department of ChemistryUniversity of FloridaGainsvilleUSA
  6. 6.Department of PhysicsUniversity of Central FloridaOrlandoUSA

Personalised recommendations