Journal of Low Temperature Physics

, Volume 140, Issue 1–2, pp 77–89

Tuning Correlation Effects with Electron–Phonon Interactions

Article

Abstract

We investigate the effect of tuning the phonon energy on the correlation effects in models of electron–phonon interactions using DMFT. In the regime where itinerant electrons, instantaneous electron–phonon driven correlations and static distortions compete on similar energy scales, we find several interesting results including (1) A crossover from band to Mott behavior in the spectral function, leading to hybrid band/Mott features in the spectral function for phonon frequencies slightly larger than the band width. (2) Since the optical conductivity depends sensitively on the form of the spectral function, we show that such a regime should be observable through the low frequency form of the optical conductivity. (3) The resistivity has a double kondo peak arrangement.

Keywords

lattice fermion models strongly correlated electron systems polarons and electron–phonon interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lanzara, A., Bogdanov, P. V., Zhou, X. J., Kellar, S. A., Feng, D. L., Lu, E. D., Yoshida, T., Eisaki, H., Fujimori, A., Kishio, K., Shimoyama, J.-I., Noda, T., Uchida, S., Hussa, Z., Shen, Z.-X. 2001Nature4126846CrossRefGoogle Scholar
  2. 2.
    Tranquada, JM., Nakajima, K., Braden, M., Pintschovius, L., McQueeney, R.J. 2002Phys. Rev. Lett.88075505PubMedGoogle Scholar
  3. 3.
    Zhao, G. M., Conder, K., Keller, H., Müller, K. A. 1996Nature381676Google Scholar
  4. 4.
    Millis, A. J., Mueller, R., Shraiman, B. I. 1996Phys. Rev. B.545405Google Scholar
  5. 5.
    Holstein, T. 1959Ann. Phys.8325Google Scholar
  6. 6.
    Georges, A., Kotliar, G., Krauth, W., Rozenburg, M. 1996Rev. Mod. Phys.6813Google Scholar
  7. 7.
    Ciuchi, S., Pasquale, F., Masciovecchio, C., Feinberg, D. 1993Europhys Lett.24575Google Scholar
  8. 8.
    Freericks, J.K., Jarrell, M., Scalapino, D.J. 1993Phys. Rev. B.486302Google Scholar
  9. 9.
    Freericks, J. K., Jarrell, M., Scalapino, D. J. 1994Europhys Lett.2537Google Scholar
  10. 10.
    Freericks, J. K. 1994Phys Rev B50403Google Scholar
  11. 11.
    Freericks, J. K., Jarrell, M. 1994Phys. Rev. B506939Google Scholar
  12. 12.
    Freericks, J. K., Zlatić, V., Chung, W., Jarrell, M. 1998Phys. Rev. B.5811613Google Scholar
  13. 13.
    Millis, A. J., Mueller, R., Shraiman, B. I. 1996Phys. Rev. B545389Google Scholar
  14. 14.
    Benedetti, P., Zeyher, R. 1998Phys. Rev. B.5814320Google Scholar
  15. 15.
    Keller, M., Metzner, W., Schollwock, U. 2002J. Low Temp. Phys.126961Google Scholar
  16. 16.
    Georges, A., Kotliar, G. 1992Phys. Rev. B.456479Google Scholar
  17. 17.
    Rozenberg, MJ., Zhang, XY., Kotliar, G. 1992Phys. Rev. Lett.691236PubMedGoogle Scholar
  18. 18.
    Metzner, W., Vollhardt, D. 1989Phys. Rev. Lett.62324PubMedGoogle Scholar
  19. 19.
    Gubernatis, JE., Jarrell, M., Silver, RN., Sivia, D.S. 1991Phys. Rev. B.446011Google Scholar
  20. 20.
    H. Touchette and D. Poulin. Aspects numé riques des simulations du modé le de hubbard – monte carlo quantique et mé thode d’entropie maximum. Technical report, Université de Sherbrooke, 2000Google Scholar
  21. 21.
    Zhang, XY., Rozenberg, MJ., Kotliar, G. 1993Phys. Rev. Lett.701666PubMedGoogle Scholar
  22. 22.
    J. P. Hague and N. d’Ambrumenil. cond-mat/0106355. 2001Google Scholar
  23. 23.
    Meyer, D., Hewson, AC., Bulla, R. 2002Phys. Rev. Lett.89196401PubMedGoogle Scholar
  24. 24.
    Hewson, A.C., Meyer, D. 2002J. Phys. Condens Matt.14427Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of WarwickUK

Personalised recommendations