Journal of Low Temperature Physics

, Volume 138, Issue 3–4, pp 729–734 | Cite as

Velocity of sound in a Bose-Einstein condensate in the presence of an optical lattice and transverse confinement

  • M. Krämer
  • C. Menotti
  • M. Modugno
Original Article

No Heading

We study the effect of the transverse degrees of freedom on the velocity of sound in a Bose-Einstein condensate immersed in a one-dimensional optical lattice and radially confined by a harmonic trap. We compare the results of full three-dimensional calculations with those of an effective 1D model based on the equation of state of the condensate. The perfect agreement between the two approaches is demonstrated for several optical lattice depths and throughout the full crossover from the 1D mean-field to the Thomas Fermi regime in the radial direction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. M.R. Andrews, D.M. Kurn, H.-J. Miesner, D.S. Durfee, C.G. Townsend, S. Inouye, and W. Ketterle, Phys. Rev. Lett. 79, 553 (1997).Google Scholar
  2. 2.
    2. M.R. Andrews, D.M. Stamper-Kurn, H.-J. Miesner, D.S. Durfee, C.G. Townsend, S. Inouye, and W. Ketterle, Phys. Rev. Lett. 80, 2967 (1998).Google Scholar
  3. 3.
    3. E. Zaremba, Phys. Rev. A 57, 518 (1998).Google Scholar
  4. 4.
    4. C.M. Kavoulakis and C.J. Pethick, Phys. Rev. A, 58 1563 (1998).Google Scholar
  5. 5.
    5. S. Stringari, Phys. Rev. A 58, 2385 (1998).Google Scholar
  6. 6.
    6. M. Krämer, L. Pitaevskii and S. Stringari, Phys. Rev. Lett. 88, 180404 (2002).Google Scholar
  7. 7.
    7. M. Machholm, C.J. Pethick, and H. Smith, Phys. Rev. A 67, 053613 (2003).Google Scholar
  8. 8.
    8. A. Smerzi and A. Trombettoni, Phys. Rev. A 68, 023613 (2003).Google Scholar
  9. 9.
    9. M. Krämer, C. Menotti, L. Pitaevskii and S. Stringari, Eur. Phys. J. D 27, 247 (2003).Google Scholar
  10. 10.
    10. E. Taylor and E. Zaremba, Phys. Rev. A 68, 053611 (2003).Google Scholar
  11. 11.
    11. J.-P. Martikainen and H.T.C. Stoof, Phys. Rev. A 69, 023608 (2004).Google Scholar
  12. 12.
    12. C. Menotti, M. Krämer, A. Smerzi, L. Pitaevskii, and S. Stringari, Phys. Rev. A 70, 023609 (2004).Google Scholar
  13. 13.
    13. M. Modugno, C. Tozzo, and F. Dalfovo, cond-mat./0405653, Phys. Rev. A, in press.Google Scholar
  14. 14.
    14. J.H. Denschlag, J.E. Simsarian, H. Häffner, C. McKenzie, A. Browacys, D. Cho, K. Helmerson, S.L. Rolston and W.D. Phillips, J. Phys. B 35, 3095 (2002).Google Scholar
  15. 15.
    15. F.S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni, A. Smerzi and M. Inguscio, Science 293, 843 (2001).Google Scholar
  16. 16.
    16. O. Morsch, M. Cristiani, J.H. Müller, D. Ciampini, and E. Arimondo, Phys. Rev. A 66, 021601 (2002).Google Scholar
  17. 17.
    17. M. Greiner, I. Bloch, O. Mandel, T.W. Hänsch, and T. Esslinger, Phys. Rev. Lett. 87, 160405 (2001).Google Scholar
  18. 18.
    18. C. Menotti and S. Stringari, Phys. Rev. A 66, 043610 (2002).Google Scholar
  19. 19.
    19. A.D. Jackson, G.M. Kavoulakis and C.J. Pethick, Phys. Rev. A 58, 2417 (1998).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • M. Krämer
    • 1
    • 2
  • C. Menotti
    • 1
    • 2
  • M. Modugno
    • 2
    • 3
  1. 1.Dipartimento di FisicaUniversità di TrentoPovoItaly
  2. 2.BEC-INFM TrentoPovoItaly
  3. 3.LENS - Dipartimento di FisicaUniversità di Firenze and INFMSesto FiorentinoItaly

Personalised recommendations