Journal of Low Temperature Physics

, Volume 138, Issue 3–4, pp 629–634 | Cite as

Decay of quantised vorticity by sound emission

  • C. F. Barenghi
  • N.G. Parker
  • N.P. Proukakis
  • C.S. Adams
Original Article

No Heading

It is thought that in a quantum fluid sound generation is the sink of turbulent kinetic energy in the absence of any other dissipation mechanism near absolute zero. We show that a suitably trapped Bose-Einstein condensate provides a model system to study the sound emitted by accelerating vortices in a controlled way.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. S.I. Davis, P.C. Hendry, P.V.E. McClintock, Physica B 280, 43 (2000).Google Scholar
  2. 2.
    2. R.P. Feynman, Statistical Mechanics, Benjamin, Massachusetts (1972).Google Scholar
  3. 3.
    3. B.V. Svistunov, Phys. Rev. B 52, 3647 (1995).Google Scholar
  4. 4.
    4. D.C. Samuels and C.F. Barenghi, Phys. Rev. Lett. 81, 4381 (1998).Google Scholar
  5. 5.
    5. W. F. Vinen and J. J. Niemela, J. Low Temp. Phys. 129, 213 (2002).Google Scholar
  6. 6.
    6. C. Nore, M. Abid and M.E. Brachet, Phys. Rev. Lett. 78, 3896 (1997).Google Scholar
  7. 7.
    7. M. Leadbeater, T. Winiecki, D.C. Samuels, C.F. Barenghi and C.S. Adams, Phys. Rev. Lett. 86, 1410 (2001).Google Scholar
  8. 8.
    8. D. Kivotides, J.C. Vassilicos, D.C. Samuels and C.F. Barenghi, Phys. Rev. Lett. 86, 3080 (2001).Google Scholar
  9. 9.
    9. W.F. Vinen, M. Tsubota and A. Mitani, Phys. Rev. Lett. 91, 135301 (2003).Google Scholar
  10. 10.
    10. E. Kozik and B. Svistunov, Phys. Rev. Lett. 92, 035301 (2004).Google Scholar
  11. 11.
    11. W.F. Vinen, Phys. Rev. B 61, 1410 (2000); ibid Phys. Rev. B 64, 134520 (2001).Google Scholar
  12. 12.
    12. M. Leadbeater, D.C. Samuels, C.F. Barenghi and C.S. Adams, Phys. Rev. A 67, 015601 (2003).Google Scholar
  13. 13.
    13. N.G. Parker, N.P. Proukakis, C.F. Barenghi and C.S. Adams, Phys. Rev. Lett. 92, 160403 (2004).Google Scholar
  14. 14.
    14. E. Lundh and P. Ao, Phys. Rev. A 61, 063612 (2000).Google Scholar
  15. 15.
    15. D. P. Arovas and J. A. Freire, Phys. Rev. B 55, 1068 (1997).Google Scholar
  16. 16.
    16. L. M. Pismen, Vortices in Nonlinear Fields (Clarendon Press, Oxford, 1999).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • C. F. Barenghi
    • 1
  • N.G. Parker
    • 2
  • N.P. Proukakis
    • 2
  • C.S. Adams
    • 2
  1. 1.School of MathematicsUniversity of NewcastleNewcastle upon Tyne
  2. 2.Department of PhysicsUniversity of DurhamDurham

Personalised recommendations