Journal of Low Temperature Physics

, Volume 138, Issue 1–2, pp 107–115 | Cite as

Effect of Strong Magnetic Fields on Superfluid 3He in 98% Porosity Aerogel

  • H.C. Choi
  • A.J. Gray
  • C.L. Vicente
  • J.S. Xia
  • G. Gervais
  • W.P. Halperin
  • N. Mulders
  • Y. Lee
Article

No Heading

We report our results of shear acoustic impedance measurements performed on superfluid 3He in 98% porosity silica aerogel. Experiments in high porosity aerogel provide unique opportunity to study the influence of disorder on a p-wave superfluid and compare the behavior with that of the well understood pure bulk. Our experiment is designed to detect acoustic signatures from both bulk liquid and liquid in aerogel. In the past, experiments on 3He in aerogel have been conducted in zero or low magnetic fields (< 1 tesla). We made measurements in magnetic fields as high as 15 tesla at 28.4 and 33.5 bars and observed a new phase in aerogel induced by magnetic fields splitting the superfluid transition into two.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. J.V. Porto and J.M. Parpia, Phys. Rev. Lett. 74, 4667 (1995).Google Scholar
  2. 2.
    2. D.T. Sprague et al., Phys. Rev. Lett. 75, 661 (1995).Google Scholar
  3. 3.
    3. K. Matsumoto et al., Phys. Rev. Lett. 79, 253–256 (1997); Errata ibid. 79, 2922 (1997).Google Scholar
  4. 4.
    4. E.V. Thuneberg et al., Phys. Rev. Lett. 80, 2861–2864 (1998).Google Scholar
  5. 5.
    5. B.I. Barker et al., Phys. Rev. Lett. 85, 2148 (2000).Google Scholar
  6. 6.
    6. P. Brussaard et al., Phys. Rev. Lett. 86, 4850 (2001).Google Scholar
  7. 7.
    7. G. Gervais et al., Phys. Rev. Lett. 87, 35701 (2001).Google Scholar
  8. 8.
    8. G. Gervais et al., Phys. Rev. B 66, 054528 (2002).Google Scholar
  9. 9.
    9. G. Baramidze and G. Kharadze, Physica B 284–288, 305 (2000).Google Scholar
  10. 10.
    10. J.A. Sauls and P. Sharma, Phys. Rev. B 68, 224502 (2003).Google Scholar
  11. 11.
    G.A. Baramidze and G.A. Kharadze, cond-mat/0307612 (2003).Google Scholar
  12. 12.
    12. V. Ambegaokar and N.D. Mermin, Phys. Rev. Lett. 30, 81 (1973).Google Scholar
  13. 13.
    13. D.D. Osheroff and P.W. Anderson, Phys. Rev. Lett. 33, 686 (1974).Google Scholar
  14. 14.
    14. D.C. Sagan et al., Phys. Rev. Lett. 53, 1939 (1984).Google Scholar
  15. 15.
    15. U.E. Israelsson et al., Phys. Rev. Lett. 53, 1943 (1984).Google Scholar
  16. 16.
    16. P. Remeijer et al., J. Low Temp. Phys. 111, 119 (1998).Google Scholar
  17. 17.
    17. I.A. Fomin, J. Low Temp. Phys. 134, 769 (2004); cond-mat/0401639 (2004).Google Scholar
  18. 18.
    18. Y. Lee et al., Nature 400, 431 (1999).Google Scholar
  19. 19.
    19. D.S. Greywall, Phys. Rev. B 33, 7520 (1986).Google Scholar
  20. 20.
    20. K. Yawata, Ph.D. thesis, University of Tsukuba (2001).Google Scholar
  21. 21.
    21. H. Fukuyama et al., Physica B 329, 1560 (2003).Google Scholar
  22. 22.
    22. D. Vollhardt and P. Wölfle, The Superfluid Phases of Helium Three, Taylor and Francis, London (1990).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • H.C. Choi
    • 1
  • A.J. Gray
    • 1
  • C.L. Vicente
    • 2
  • J.S. Xia
    • 2
  • G. Gervais
    • 3
  • W.P. Halperin
    • 3
  • N. Mulders
    • 4
  • Y. Lee
    • 1
    • 2
  1. 1.Department of PhysicsUniversity of FloridaGainesvilleUSA
  2. 2.National High Magnetic Field LaboratoryUniversity of FloridaGainesvilleUSA
  3. 3.Department of Physics and AstronomyNorthwestern UniversityEvanstonUSA
  4. 4.Department of PhysicsUniversity of DelawareNewarkUSA

Personalised recommendations