Advertisement

Journal of Low Temperature Physics

, Volume 109, Issue 3–4, pp 423–459 | Cite as

Vortex Mutual Friction in Superfluid 3He

  • T. D. C. Bevan
  • A. J. Manninen
  • J. B. Cook
  • H. Alles
  • J. R. Hook
  • H. E. Hall
Article

Abstract

We give a full account of our extensive measurements of vortex mutual friction in rotating superfluid 3He, in both the A- and B-phases. The B-phase results are in qualitative agreement with a theory based on the concept of “spectral flow”; the agreement becomes quantitative if an effective energy gap of 0.63 Δ is used, but the Justification for such a substitution is not clear. The vortex core transition, at first not seen because of metastability and hysteresis, has now been observed. Detailed investigation suggests that the high temperature vortex state is a temperature dependent mixture of at least two vortex types. The A-phase mutual friction is found to be well described by two hydrodynamic coefficients, the orbital viscosity and the orbital inertia. The latter corresponds to an orbital angular momentum per Cooper pair of (0.0015 ± 0.0017 ) ħ, consistent with the prediction of the spectral flow theory. We find that the most uniform l texture is obtained by cooling through Tc while rotating, and then stopping rotation. Detailed investigation of textural memory effects shows that the uniform l-up and l-down textures are associated with opposite directions of rotation. We discuss the various types of texture that may be formed in our experiments. Finally, we compare our mutual friction results with those found in 4HeII.

Keywords

Vortex Memory Effect Vortex Core Orbital Angular Momentum Cooper Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    T-L. Ho and N. D. Mermin, Phys. Rev. B 21, 5190 (1980).CrossRefGoogle Scholar
  2. 2.
    H. E. Hall, Adv. Phys. 9, 89 (1960).Google Scholar
  3. 3.
    R. J. Donnelly, Quantized Vortices in Helium II, Cambridge University Press, Cambridge (1991) p. 89.Google Scholar
  4. 4.
    J. R. Hook, T. D. C. Bevan, A. J. Manninen, J. B. Cook, A. J. Armstrong, and H. E. Hall, Physica B 210, 251 (1995).Google Scholar
  5. 5.
    H. E. Hall, P. L. Gammel, and J. D. Reppy, Phys. Rev. Lett. 52, 1701 (1984).CrossRefGoogle Scholar
  6. 6.
    M. Krusius, Y. Kondo, J. S. Korhonen, and E. B. Sonin, Phys. Rev. B 47, 15113 (1993).CrossRefGoogle Scholar
  7. 7.
    H. Alles, J. P. Ruutu, A. V. Babkin, P. J. Hakonen, and E. B. Sonin, J. Low Temp. Phys. 102, 411 (1996).CrossRefGoogle Scholar
  8. 8.
    D. J. Thouless, P. Ao, and Q. Niu, Phys. Rev. Lett. 76, 3758 (1996); see also C. Wexler, Phys. Rev. Lett. 79, 1321 (1997).CrossRefPubMedGoogle Scholar
  9. 9.
    J. P. Pekola, J. T. Simola, P. J. Hakonen, M. Krusius, O. V. Lounasmaa, K. K. Nummila, G. Mamniashvili, R. E. Packard, and G. E. Volovik, Phys. Rev. Lett. 53, 584 (1984).CrossRefGoogle Scholar
  10. 10.
    P. W. Anderson, Quantum Fluids, D. F. Brewer (Ed.), North-Holland, Amsterdam (1966) p. 146.Google Scholar
  11. 11.
    D. Vollhardt and P. Wolfle, The Superfluid Phases of Helium 3, Taylor and Francis, London (1990) Chapter 9.Google Scholar
  12. 12.
    N. D. Mermin and T-L. Ho, Phys Rev. Lett. 36, 594 (1976).CrossRefGoogle Scholar
  13. 13.
    T. D. C. Bevan, A. J. Manninen, J. B. Cook, A. J. Armstrong, J. R. Hook, and H. E. Hall, Phys. Rev. Lett. 74, 750 (correction 74, 3092) (1995).CrossRefPubMedGoogle Scholar
  14. 14.
    D. S. Greywall, Phys. Rev. B 33, 7520 (1986).CrossRefGoogle Scholar
  15. 15.
    E. V. Thuneberg, Europhys. Lett. 3, 711 (1987).Google Scholar
  16. 16.
    Y. Kondo. J. S. Korhonen, M. Krusius, V. V. Dmitriev, E. V. Thuneberg, and G. E. Volovik, Phys. Rev. Lett. 68, 3331 (1992).CrossRefPubMedGoogle Scholar
  17. 17.
    J. B. Cook, A. J. Manninen, J. R. Hook, H. Alles, and H. E. Hall, Czech. J. Phys. 46 Suppl. S1, 3 (1996).Google Scholar
  18. 18.
    E. V. Thuneberg, Phys. Rev. B 36, 3583 (1987).CrossRefGoogle Scholar
  19. 19.
    M. M. Salomaa and G. E. Volovik, Rev. Mod. Phys. 59, 533 (1987).CrossRefGoogle Scholar
  20. 20.
    J. Kurkijarvi, private communication.Google Scholar
  21. 21.
    N. B. Kopnin and M. M. Salomaa, Phys. Rev. B 44, 9667 (1991).CrossRefGoogle Scholar
  22. 22.
    N. B. Kopnin, G. E. Volovik, and U. Parts, Europhys. Lett. 32, 651 (1995).Google Scholar
  23. 23.
    T. D. C. Bevan, A. J. Manninen, J. B. Cook, J. R. Hook, H. E. Hall, T. Vachaspati, and G. E. Volovik, Nature 386, 689 (1997).CrossRefGoogle Scholar
  24. 24.
    G. E. Volovik, Czech. J. Phys. 46 Suppl. S6, 3048 (1996).Google Scholar
  25. 25.
    J. R. Hook, A. J. Manninen, J. B. Cook, and H. E. Hall, Czech. J Phys. 46 Suppl. S6, 2930 (1996).Google Scholar
  26. 26.
    M. Stone, Phys. Rev. B 54, 13222 (1996).CrossRefGoogle Scholar
  27. 27.
    N. B. Kopnin and A. V. Lopatin, Phys. Rev. B (submitted).Google Scholar
  28. 28.
    A. J. Manninen, T. D. C. Bevan, J. B. Cook, H. Alles, J. R. Hook, and H. E. Hall, Phys. Rev. Lett. 77, 5086 (1996).CrossRefPubMedGoogle Scholar
  29. 29.
    J. R. Hook, A. D. Eastop, E. Faraj, S. G. Gould, and H. E. Hall, Phys. Rev. Lett. 57, 1749 (1986).CrossRefPubMedGoogle Scholar
  30. 30.
    U. Parts, J. M. Karimaki, J. H. Koivuniemi, M. Krusius, V. M. H. Ruutu, E. V. Thuneberg, and G. E. Volovik, Phys. Rev. Lett. 75, 3320 (1995).CrossRefPubMedGoogle Scholar
  31. 31.
    N. D. Mermin, Physica B + C 90, 1 (1977).Google Scholar
  32. 32.
    V. R. Chechetkin, Zh. Eksp. Theor. Fiz. 71, 1463 (1976) [Soc. Phys. JETP 44, 766 (1976)]; P. W. Anderson and G. Toulouse, Phys. Rev. Lett. 38, 508 (1977).Google Scholar
  33. 33.
    M. C. Cross and P. W. Anderson, Proc. LT14 1, 29 (1975).Google Scholar
  34. 34.
    E. B. Sonin, Rev. Mod. Phys. 59, 87 (1987).CrossRefGoogle Scholar
  35. 35.
    W. F. Brinkman and M. C. Cross, Progress in Low Temperature Physics VIIa D. F. Brewer (Ed.), North-Holland, Amsterdam (1978), p. 105 and references therein.Google Scholar
  36. 36.
    H. E. Hall, Phys. Rev. Lett. 54, 205 (1985), and references therein; see also comments in Phys. Rev. Lett. 55, 441, 442 (1985).CrossRefPubMedGoogle Scholar
  37. 37.
    J. C. Wheatley, Progress in Low Temperature Physics VIIa D. F. Brewer (ed.) North-Holland, Amsterdam (1978), p. 1.Google Scholar
  38. 38.
    R. Combescot, Physics Letters 78A, 85 (1980).Google Scholar
  39. 39.
    U. Parts, E. V. Thuneberg, G. E. Volovik, J. H. Koivuniemi, V. M. H. Ruutu, M. Heinila, J. M. Karimaki, and M. Krusius, Phys. Rev. Lett. 72, 3839 (1994).CrossRefPubMedGoogle Scholar
  40. 40.
    M. A. Clayton, Ph. D. Thesis, University of Manchester (1989).Google Scholar
  41. 41.
    T-L. Ho, Ph. D. Thesis, Cornell University (1978).Google Scholar
  42. 42.
    C. F. Barenghi, R. J. Donnelly, and W. F. Vinen, J. Low Temp. Phys. 52, 189 (1983).CrossRefGoogle Scholar
  43. 43.
    D. S. Greywall, Phys. Rev. B 29, 4933 (1984).CrossRefGoogle Scholar
  44. 44.
    N. V. Wellard, Ph. D. Thesis, University of Manchester (1982).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 1997

Authors and Affiliations

  • T. D. C. Bevan
    • 1
  • A. J. Manninen
    • 1
  • J. B. Cook
    • 1
  • H. Alles
    • 1
  • J. R. Hook
    • 1
  • H. E. Hall
    • 1
  1. 1.Schuster LaboratoryUniversity of ManchesterManchesterUK

Personalised recommendations