Advertisement

Journal of Insect Behavior

, Volume 31, Issue 6, pp 585–598 | Cite as

Assortative Mating by Size in the American Rubyspot Damselfly (Hetaerina americana)

  • Martín Alejandro Serrano-MenesesEmail author
  • Kenia López-García
  • Aldo Isaac Carrillo-Muñoz
Article

Abstract

Assortative mating refers to the non-random nature of mating patterns between certain males and females. Thus, males and females may associate negative- or positively, based on different traits. Amongst these associations, assortative mating by size is one of the most common patterns found in natural populations of animals. Two main hypotheses have been proposed to account for the occurrence of assortative mating by size. First, it may be the result of mechanical, temporal, or physiological constraints. Second, it may occur in response to direct or indirect selection on mating preferences. Here we investigate whether the American rubyspot damselfly exhibits true assortative mating by size. Males of this species exhibit high levels of male-male competition, as they compete over territories, to which females are attracted for copulation. There is a documented large male body size advantage: the largest males are better able to hold their territories and thus secure more copulations. Our major results show that i) mated males are more likely to be larger than unmated males, whereas mated and unmated females tend to have similar body sizes; ii) H. americana exhibits true assortative mating by size; as such, this pattern is not driven by seasonal changes in the body sizes of males and females. We suggest that this mating pattern occurs in this species given the advantages of large male size, and the advantages of large female body size (i.e. higher fecundity). We believe that males may be able to evaluate a female’s reproductive value and exert mate choice.

Keywords

Assortative mating body size territoriality damselfly 

Notes

Acknowledgements

A. I. C.-M. is a PhD student of the Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala. This study was partially funded by the programme Fortalecimiento de Cuerpos Académicos (Convocatoria 2016) (SEP-PRODEP), through a grant to the Cuerpo Académico Ecología y Evolución (UATLX-CA-227), Universidad Autónoma de Tlaxcala, Mexico.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Álvarez HA, Serrano-Meneses MA, Reyes-Márquez I, Jiménez-Cortés JG, Córdoba-Aguilar A (2013) Allometry of a sexual trait in relation to diet experience and alternative mating tactics in two rubyspot damselflies (Calopterygidae: Hetaerina). Biol J Linn Soc 108:521–533CrossRefGoogle Scholar
  2. Amundsen T (2000) Why are female birds ornamented? Trends Ecol Evol 15:149–155CrossRefGoogle Scholar
  3. Andersson M (1994) Sexual selection. In: Princeton University press. USA, New JerseyGoogle Scholar
  4. Arnqvist G, Rowe L (2005) Sexual conflict. Princeton University press, New Jersey, USAGoogle Scholar
  5. Arnqvist G, Rowe L, Krupa JJ, Sih A (1996) Assortative mating by size: a meta-analysis of mating patterns in water striders. Evol Ecol 10:265–284CrossRefGoogle Scholar
  6. Banks MJ, Thompson DJ (1987) Lifetime reproductive success of females of the damselfly Coenagrion puella. J Anim Ecol 56:815–832CrossRefGoogle Scholar
  7. Black JM, Owen M (1995) Reproductive performance and assortative pairing in relation to age in barnacle geese. J Anim Ecol 64:234–244CrossRefGoogle Scholar
  8. Bernstein R, Bernstein S (2003) Assortative mating in insects: sexual selection vs. sampling artifact. West N Am Nat 63:374–381Google Scholar
  9. Bonduriansky R (2001) The evolution of male mate choice in insects: a synthesis of ideas and evidence. Biol Rev 76:305–339CrossRefGoogle Scholar
  10. Bonneaud C, Chastel O, Federici P, Westerdahl H, Sorci G (2006) Complex Mhc-based mate choice in a wild passerine. Proc R Soc B 273:1111–1116CrossRefGoogle Scholar
  11. Brown WD (1990) Size-assortative mating in the blister beetle Lytta magister (Coleoptera: Meloidae) is due to male and female preference for larger mates. Anim Behav 40:901–909CrossRefGoogle Scholar
  12. Contreras-Garduño J, Buzatto BA, Abundis L, Nájera-Cordero K, Córdoba-Aguilar A (2007) Wing colour properties do not reflect male condition in the American rubyspot (Hetaerina americana). Ethology 113:944–952CrossRefGoogle Scholar
  13. Contreras-Garduño J, Canales-Lazcano J, Córdoba-Aguilar A (2006) Wing pigmentation, immune ability, fat reserves and territorial status in males of the rubyspot damselfly, Hetaerina americana. J Ethol 24:165–173CrossRefGoogle Scholar
  14. Corbet PS (1963) A biology of dragonflies. In: Quadrangle Books. Chicago, USAGoogle Scholar
  15. Corbet PS (1999) Dragonflies: behaviour and ecology of Odonata. Harley Books, Martins, United KingdomGoogle Scholar
  16. Cordero A (1991) Fecundity of Ischnura graellsii (Rambur) in the laboratory (Zygoptera: Coenagrionidae). Odonatologica 20:37–44Google Scholar
  17. Córdoba-Aguilar A (1994) Male substrate use in relation to age and size in Hetaerina cruentata (Rambur) (Zygoptera: Calopterygidae). Odonatologica 23:399–403Google Scholar
  18. Córdoba-Aguilar A, Cordero-Rivera A (2005) Evolution and ecology of Calopterygidae (Zygoptera: Odonata): status of knowledge and research perspectives. Neotrop Entomol 34:861–879CrossRefGoogle Scholar
  19. Córdoba-Aguilar A, Raihani G, Serrano-Meneses MA, Contreras-Garduño J (2009) The lek mating system of Hetaerina damselflies (Insecta: Calopterygidae). Behaviour 146:189–207CrossRefGoogle Scholar
  20. Crespi BJ (1989) Causes of assortative mating in arthropods. Anim Behav 38:980–1000CrossRefGoogle Scholar
  21. Edward DA, Chapman T (2011) The evolution and significance of male mate choice. Trends Ecol Evol 26:647–654CrossRefGoogle Scholar
  22. Fairbairn DJ (1988) Sexual selection for homogamy in the Gerridae: an extension of Ridley's comparative approach. Evolution 42:1212–1222CrossRefGoogle Scholar
  23. Fairbairn DJ (1997) Allometry for sexual size dimorphism: pattern and process in the coevolution of body size in males and females. Annu Rev Ecol Syst 28:659–687CrossRefGoogle Scholar
  24. Fauchier J, Thomas F (2001) Interaction between Gammarinema gammari (Nematoda), Microphallus papillorobustus (Trematoda) and their common host Gammarus insensibilis (Amphipoda). J Parasitol 87:1479–1481CrossRefGoogle Scholar
  25. Forbes MRL, Pagola H, Baker RL (1992) Causes of a non-random pairing by size in the brine shrimp, Artemia salina: (Crustacea: Anostraca). Oecologia 91:214–219CrossRefGoogle Scholar
  26. García-Navas V, Ortego J, Sanz JJ (2009) Heterozygosity-based assortative mating in blue tits (Cyanistes caeruleus): implications for the evolution of mate choice. Proc R Soc B 276:2931–2940CrossRefGoogle Scholar
  27. Grether GF (1996a) Sexual selection and survival selection on wing coloration and body size in the rubyspot damselfly Hetaerina americana. Evolution 50:1939–1948CrossRefGoogle Scholar
  28. Grether GF (1996b) Intrasexual competition alone favors a sexually dimorphic ornament in the rubyspot damselfly Hetaerina americana. Evolution 50:1949–1957CrossRefGoogle Scholar
  29. Gwynne DT (1991) Sexual competition among females: what causes courtship-role reversal. Trends Ecol Evol 6:118–121CrossRefGoogle Scholar
  30. Harvey PH, Mace GM (1982) Comparisons between taxa and adaptive trends: problems of methodology. In: King’s College Sociobiology Group (ed) Current problems in sociobiology. Cambridge University Press, New York, USA, pp 343–361Google Scholar
  31. Honěk A (1993) Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66:483–492CrossRefGoogle Scholar
  32. Hooper PL, Miller GF (2008) Mutual mate choice can drive costly signaling even under perfect monogamy. Adapt Behav 16:53–70CrossRefGoogle Scholar
  33. Jawor JM, Linville SU, Beall SM, Breitwisch R (2003) Assortative mating by multiple ornaments in northern cardinals (Cardinalis cardinalis). Behav Ecol 14:515–520CrossRefGoogle Scholar
  34. Jiang Y, Bolnick DI, Kirkpatrick M (2013) Assortative mating in animals. Am Nat 181:E125–E138CrossRefGoogle Scholar
  35. Kemp DJ (2008) Female mating biases for bright ultraviolet iridescence in the butterfly Eurema hecabe (Pieridae). Behav Ecol 19:1–8CrossRefGoogle Scholar
  36. Koskimäki J, Rantala MJ, Taskinen J, Tynkkynen K, Suhonen J (2004) Immunocompetence and resource holding potential in the damselfly, Calopteryx virgo L. Behav Ecol 15:169–173CrossRefGoogle Scholar
  37. Krüger O, Lindström J, Amos W (2001) Maladaptive mate choice maintained by heterozygote advantage. Evolution 55:1207–1214CrossRefGoogle Scholar
  38. LaBarbera M (1989) Analyzing body size as a factor in ecology and evolution. Annu Rev Ecol Syst 20:97–117CrossRefGoogle Scholar
  39. Lawrence WS (1986) Male choice and competition in Tetraopes tetraophthalmus: effects of local sex ratio variation. Behav Ecol Sociobiol 18:289–296CrossRefGoogle Scholar
  40. Marden JH, Waage JK (1990) Escalated damselfly territorial contests are energetic wars of attrition. Anim Behav 39:954–959CrossRefGoogle Scholar
  41. Masumoto T (1999) Size assortative mating and reproductive success of the funnel-web spider, Agelena limbata (Araneae; Agelenidae). J Insect Behav 12:353–361CrossRefGoogle Scholar
  42. McArdle BH (1988) The structural relationship: regression in biology. Can J Zool 66:2329–2339CrossRefGoogle Scholar
  43. McLain DK, Shure DJ (1987) Pseudocompetition: interspecific displacement of insect species through misdirected courtship. Oikos 49:291–296CrossRefGoogle Scholar
  44. Parker GA, Pizzari T (2010) Sperm competition and ejaculate economics. Biol Rev 85:897–934CrossRefGoogle Scholar
  45. Partridge L (1983) Non-random mating and offspring fitness. In: Bateson P (ed) Mate choice. Cambridge University Press, Cambridge, United Kingdom, pp 227–256Google Scholar
  46. Pavković-Lučić S, Kekić V, Čvoro A (2009) Larger male mating advantage depends on the sex ratio in Drosophila melanogaster. Ethol Ecol Evol 21:155–160CrossRefGoogle Scholar
  47. Plaistow S, Siva-Jothy MT (1996) Energetic constraints and male mate-securing tactics in the damselfly Calopteryx splendens xanthostoma (Charpentier). Proc R Soc B 263:1233–1239CrossRefGoogle Scholar
  48. R Core Team (2018) R: A language and environment for statistical Computing R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
  49. Raihani G, Serrano-Meneses MA, Córdoba-Aguilar A (2008) Male mating tactics in the American rubyspot damselfly: territoriality, nonterritoriality and switching behaviour. Anim Behav 75:1851–1860CrossRefGoogle Scholar
  50. Ramírez-Delgado J, López-García K, Lara C, Serrano-Meneses MA (2015) Wing pigmentation in males of a territorial damselfly: alternative reproductive tactics, allometry and mating success. J Insect Behav 28:569–581CrossRefGoogle Scholar
  51. Ridley M (1983) The explanation of organic diversity: the comparative method and adaptations for mating. Clarendon Press, OxfordGoogle Scholar
  52. Serrano-Meneses MA, Córdoba-Aguilar A, Azpilicueta-Amorín M, González-Soriano E, Székely T (2008) Sexual selection, sexual size dimorphism and Rensch’s rule in Odonata. J Evol Biol 21:1259–1273CrossRefGoogle Scholar
  53. Serrano-Meneses MA, Córdoba-Aguilar A, Méndez V, Layen SJ, Székely T (2007) Sexual size dimorphism in the American rubyspot: male body size predicts male competition and mating success. Anim Behav 73:987–997CrossRefGoogle Scholar
  54. Sharp NP, Agrawal AF (2009) Sexual selection and the random union of gametes: testing for a correlation in fitness between mates in Drosophila melanogaster. Am Nat 174:613–622CrossRefGoogle Scholar
  55. Sokal RR, Rohlf FJ (2012) Biometry: the principles and practice of statistics in biological research. W. H. In: Freeman and company. USA, New YorkGoogle Scholar
  56. Tárano Z, Herrera EA (2003) Female preferences for call traits and male mating success in the neotropical frog Physalaemus enesefae. Ethology 109:121–134CrossRefGoogle Scholar
  57. Warton DI, Duursma RA, Falster DS, Taskinen S (2012) Smatr 3- an R package for estimation and inference about allometric lines. Methods Ecol Evol 3:257–259CrossRefGoogle Scholar
  58. Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev 81:259–291CrossRefGoogle Scholar
  59. Wedell N, Gage MJG, Parker GA (2002) Sperm competition, male prudence and sperm-limited females. Trends Ecol Evol 17:313–320CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Martín Alejandro Serrano-Meneses
    • 1
    Email author
  • Kenia López-García
    • 1
    • 2
  • Aldo Isaac Carrillo-Muñoz
    • 3
    • 4
  1. 1.Departamento de Ciencias Químico-BiológicasUniversidad de las Américas PueblaPueblaMexico
  2. 2.Facultad de Ciencias de la SaludUniversidad Autónoma de TlaxcalaTlaxcalaMexico
  3. 3.Centro Tlaxcala de Biología de la ConductaUniversidad Autónoma de TlaxcalaTlaxcalaMexico
  4. 4.Doctorado en Ciencias BiológicasUniversidad Autónoma de TlaxcalaTlaxcalaMexico

Personalised recommendations