Journal of Insect Behavior

, Volume 29, Issue 4, pp 432–448 | Cite as

Threat, Signal or Waste? Meaning of Corpses in two Dulotic Ant Species

  • István Maák
  • Attila Torma
  • Judit Kovács
  • Anna Somogyi
  • Gábor Lőrinczi
Article

Abstract

Ant corpses, besides representing threat of infection by pathogens and parasites, can also be used during interspecific conflicts to inhibit the activity of the attacked colony, or they can be consumed as food. In the view of the former, the signal properties of corpses can be manifold. Besides discriminating nestmates and foes, the corpses of different ant species may act as cues for foragers, signaling the presence of other rival species, and triggering appropriate responses (e.g., alarm, retreat or foraging). In our study, we examined the responses of the facultative slave-maker Formica sanguinea and those of the obligate Polyergus rufescens towards corpses of nestmates, non-nestmate conspecifics, heterospecific slave-makers and their slaves, and corpses of non-enslaved host species under laboratory conditions. Both dulotic species responded differently to corpses of different origin. In F. sanguinea, the most intensive response was elicited by the corpses of P. rufescens and its slave, but also the corpses of non-nestmate conspecifics and their slaves elicited many adverse responses. In P. rufescens, the corpses of non-nestmate conspecifics and their slaves elicited the most adverse response. Both dulotic species distinguished corpses of their slaves from corpses of non-enslaved hosts. Based on our results, ant corpses are not meaningless objects scattered in the field, but cues carrying information that trigger different behavioral responses, and in F. sanguinea they can even represent an important food source.

Keywords

Competition host-parasite model facultative slave-maker necrophoresis necrophagy obligate slave-maker 

Notes

Acknowledgments

We are grateful for the helpful comments of Wojciech Czechowski, and Csaba Tölgyesi for helping with linguistic issues.

References

  1. Bartoń K (2013) MuMIn: Multi-model inference. R package version 1.9.13. http://CRAN.R-project.org/package=MuMIn. Published online 29 October 2013
  2. Bates D, Maechler M, Bolker B, Walker S (2013) lme4: Linear mixed-effects models using Eigen and S4. R package version 1.0–5 http://CRAN.R-project.org/ package = lme4. Published online 25 October 2013
  3. Bhatkar A, Whitcomb WH (1970) Artificial diet for rearing various species of ants. Fla Entomol 53:229–232CrossRefGoogle Scholar
  4. Bono JM, Gordon ER, Antolin MF, Herbers JM (2006) Raiding activity of an obligate (Polyergus breviceps) and two facultative (Formica puberula and F. gynocrates) slave-making ants. J Insect Behav 19:429–446CrossRefGoogle Scholar
  5. Boomsma JJ, Schmid-Hempel P, Hughes WOH (2005) Life histories and parasite pressure across the major groups of social insects. In: Fellowes M, Holloway GR (eds) Insect evolutionary ecology, royal entomological society. CABI Publishing, Cambridge, pp. 139–175Google Scholar
  6. Brandt M, Heinze J, Schmitt T, Foitzik S (2005) A chemical level in the coevolutionary arms race between an ant social parasite and its hosts. J Evolution Biol 18:576–586CrossRefGoogle Scholar
  7. Buschinger A (2009) Social parasitism among ants: a review (Hymenoptera: Formicidae). Myrmecol News 12:219–235Google Scholar
  8. Carlin NF, Johnston AB (1984) Learned enemy specification in the defense recruitment system of an ant. Naturwissenschaften 71:156–157CrossRefGoogle Scholar
  9. Choe DH, Rust MK (2008) Horizontal transfer of insecticides in laboratory colonies of the argentine ant (Hymenoptera: Formicidae). J Econ Entomol 101:1397–1405CrossRefPubMedGoogle Scholar
  10. Choe DH, Millar JG, Rust MK (2009) Chemical signal associated with life inhibits necrophoresis in Argentine ants. P Natl Acad Sci USA 109:8251–8255CrossRefGoogle Scholar
  11. Chouvenc T, Robert A, Sémon E, Bordereau C (2012) Burial behaviour by dealates of the termite Pseudacanthotermes spiniger (Termitidae, Macrotermitinae) induced by chemical signals from termite corpses. Insect Soc 59:119–125CrossRefGoogle Scholar
  12. Cournault L, de Biseau JC (2009) Hierarchical perception of fertility signals and nestmate recognition cues in two dolichoderine ants. Behav Ecol Sociobiol 63:1635–1641CrossRefGoogle Scholar
  13. Cremer S, Armitage SAO, Schmid-Hempel P (2007) Social immunity. Curr Biol 17:693–702CrossRefGoogle Scholar
  14. Czechowski W (1976) Cmentarzyska mrówek [Ant cemeteries]. Przegl Zool 20:417–427 (in polish)Google Scholar
  15. Czechowski W (1985) Competition between Myrmica laevinodis Nyl. and Lasius niger (L.) (Hymenoptera, Formicidae). Ann Zool 39:153–173Google Scholar
  16. Czechowski W (1996) Colonies of hybrids and mixed colonies; interspecific nest take over in wood ants (Hymenoptera, Formicidae). Mem Zoologi 50:1–116+20Google Scholar
  17. Czechowski W (2006) The route of Formica polyctena Först. as a factor promoting emancipation of Formica fusca L. slaves from colonies of Polyergus rufescens (Latr.) (Hymenoptera: Formicidae). Pol J Ecol 54:159–162Google Scholar
  18. Czechowski W (2007a) Do Polyergus rufescens (Latr.) and Formica sanguinea Latr. (Hymenoptera: Formicidae) share resources of slave species with each other? Pol J Ecol 55:169–173Google Scholar
  19. Czechowski W (2007b) Behavioural and socially parasitic relations between Polyergus rufescens (Latr.) and Formica polyctena Först. (Hymenoptera: Formicidae). Entomol Fennica 18:54–64Google Scholar
  20. Czechowski W (2008) Around nest cemeteries of Myrmica schenky EM. (Hymenoptera: Formicidae): their origin and a possible significance. Pol J Ecol 56:359–363Google Scholar
  21. Czechowski W, Markó B, Godzinska EJ (2009) Corpse carrying in ants (Hymenoptera: Formicidae) behavioral side effect of aggressive arousal or competitive signaling? Pol J Ecol 57:341–352Google Scholar
  22. Czechowski W, Radchenko A, Czechowska W, Vepsäläinen K (2012) The ants (Hymenoptera, Formicidae) of Poland with reference to the myrmecofauna of Europe. MIZ PAS, Warszawa, p. 496Google Scholar
  23. d’Ettorre P, Heinze J (2001) Sociobiology of slave-making ants. Acta Ethol 3:67–82CrossRefGoogle Scholar
  24. De Bruyn G, Mabelis AA (1972) Predation and aggression as possible regulatory mechanisms in Formica. Ekol Pol 20:93–101Google Scholar
  25. Diez L, Deneubourg JL, Detrain C (2012) Social prophylaxis through distant corpse removal in ants. Naturwissenchaften. doi:10.1007/s00114-012-0965-6 Google Scholar
  26. Diez L, Le Borgne H, Lejeune P, Detrain C (2013a) Who brings out the dead? Necrophoresis in the red ant, Myrmica rubra. Anim Behav 6:1259–1264CrossRefGoogle Scholar
  27. Diez L, Moquet L, Detrain C (2013b) Post-mortem changes in chemical profile and their influence on corpse removal in ants. J Chem Ecol. doi:10.1007/s10886-013-0365-1 PubMedGoogle Scholar
  28. Erdős L, Gallé R, Körmöczi L, Bátori Z (2013) Species composition and diversity of natural forest edges: edge responses and local edge species. Community Ecol 14:48–58CrossRefGoogle Scholar
  29. Farji-Brener AG, Sasal Y (2003) Is dump material an effective small-scale deterrent to herbivory by leaf-cutting ants? Ecoscience 10:151–154Google Scholar
  30. Gordon DM (1983) Dependence of necrophoric response to oleic acid on social context in the ant Pogonomyrmex badius. J Chem Ecol 1:105–111CrossRefGoogle Scholar
  31. Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evolution Biol 24:699–711CrossRefGoogle Scholar
  32. Guerrieri FJ, Nehring V, Jørgensen CG, Nielsen J, Galizia CG, d'Ettorre P (2009) Ants recognize foes and not friends. P R Soc B 276:2461–2468CrossRefGoogle Scholar
  33. Hölldobler B (1988) Communication and competition in ant communities evolution and coadaptation in biotic communities. University of Tokyo Press, Tokyo, pp. 95–124Google Scholar
  34. Hölldobler B, Wilson EO (1990) The ants. The Belknap Press of Harvard University Press, Cambridge, p. 732CrossRefGoogle Scholar
  35. Howard D, Tschinkel WR (1976) Aspects of necrophoric behavior in the red imported fire ant, Solenopsis invicta. Behavior 56:1–2CrossRefGoogle Scholar
  36. Le Moli F, Grasso DA, D’Ettorre P, Mori A (1993) Intraspecific slavery in Polyergus rufescens Latr. (Hymenoptera, Formicidae): field and laboratory observations. Insect Soc 40:433–437CrossRefGoogle Scholar
  37. Le Moli F, Mori A, Grasso DA (1994) Behavioural ecology of the obligatory slave-making ant, Polyergus rufescens LATR. (Hymenoptera, Formicidae). A review. In: Czechowski W (ed) Ants, fourmis, mrówki… in memory of professor Dr. Bohdan Pisarski, Mem Zoologi 48: 133–146Google Scholar
  38. Lenoir A, d’Ettorre P, Errard C, Hefetz A (2001) Chemical ecology and social parasitism in ants. Annu Rev Entomol 46:573–599CrossRefPubMedGoogle Scholar
  39. Maák I, Markó B, Erős K, Babik H, Ślipiński P, Czechowski W (2014) Cues or meaningless objects? Differential responses of the ant Formica cinerea to corpses of competitors and enslavers. Anim Behav 91:53–59CrossRefGoogle Scholar
  40. Marikovsky PI (1962) On some features of behaviour of the ants Formica rufa L. Infected with fungus disease. Insect Soc 2:173–179CrossRefGoogle Scholar
  41. Marikovsky PI (1963) The ants Formica sanguinea as pillagers of Formica rufa Lin. Nests. Insec Soc 10:119–128CrossRefGoogle Scholar
  42. Martin S, Drijfhout F (2009) A review of ant cuticular hydrocarbons. J Chem Ecol 35:1151–1161CrossRefPubMedGoogle Scholar
  43. Martin S, Helanterä H, Drijfhout FP (2008) Evolution of species-specific cuticular hydrocarbon patterns in Formica ants. Biol J Linn Soc 95:131–140CrossRefGoogle Scholar
  44. Martin SJ, Helanterä H, Kiss K, Lee YR, Drijfhout FP (2009) Polygyny reduces rather than increases nestmate discrimination cue diversity in Formica exsecta ants. Insect Soc 56:375–383Google Scholar
  45. Mori A, Grasso D, Le Moli F (1991) Eco-ethological study on raiding behaviour of the European amazon ant, Polyergus rufescens Latr. (Hymenoptera: Formicidae). Ethology 88:46–62CrossRefGoogle Scholar
  46. Mori A, Grasso D, Le Moli F (2000) Raiding and foraging behavior of the blood-red ant, Formica sanguinea Latr. (Hymenoptera, Formicidae). J Insect Behav 13:421–437CrossRefGoogle Scholar
  47. Mori A, Grasso DA, Visicchio R, Le Moli F (2001) Comparison of reproductive strategies and raiding behavior in facultative obligatory slave-making ants: the case of Formica sanguinea and Polyergus rufescens. Insect Soc 48:302–314CrossRefGoogle Scholar
  48. Oi DH, Pereira RM (1993) Ant behavior and microbial pathogens (Hymenoptera: Formicidae). Fla Entomol 76:63–74CrossRefGoogle Scholar
  49. Pamminger T, Scharf I, Pennings PS, Foitzik S (2011) Increased host aggression as an induced defense against slave-making ants. Behav Ecol 22:255–260Google Scholar
  50. R Core Team (2013) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.Rproject.org/
  51. Renucci M, Tirrard A, Provost E (2011) Complex undertaking behavior in Temnothorax lichtensteini ant colonies: from corpse-burying behavior to necrophoric behavior. Insect Soc 58:9–16CrossRefGoogle Scholar
  52. Slipinski P, Markó B, Czechowski W, Wlodarczyk T (2011) Space use in Formica sanguinea-my territory my kingdom? Entomol Rom 16:63Google Scholar
  53. Soeprono AM, Rust MK (2004) Effect of horizontal transfer of barrier insecticides to control argentine ants (hymenoptera: Formicidae). J Econ Entomol 97:1675–1681CrossRefPubMedGoogle Scholar
  54. Therneau T (2013) A package for survival analysis in S. R package version 2.37–4 http://CRAN.R-project.org/package=survival. Published online 27 March 2013
  55. Wasmann E (1891) Die zusammengesetzen nester und gemischten Kolonien der Amaisen. Aschendorffschen Buchdruckerei, Münster in Westphalien, p. 262Google Scholar
  56. Wilson EO (1958) A chemical releaser of alarm and digging behavior in the ant Pogonomyrmex badius (Latreille). Psyche 65:41–51CrossRefGoogle Scholar
  57. Wilson EO (1976) The organization of colony defence in the ant Pheidole dentate Mayr (hymenoptera: Formicidae). Behav Ecol Sociobiol 1:63–81CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • István Maák
    • 1
  • Attila Torma
    • 1
  • Judit Kovács
    • 1
  • Anna Somogyi
    • 1
  • Gábor Lőrinczi
    • 1
  1. 1.Department of EcologyUniversity of SzegedSzegedHungary

Personalised recommendations