Advertisement

Journal of Insect Behavior

, Volume 29, Issue 1, pp 80–98 | Cite as

Fine Scale Movements of the Butterfly Plebejus argus in a Heterogeneous Natural Landscape as Revealed by GPS Tracking

  • Pilar FernándezEmail author
  • Alejandro Rodríguez
  • Rafael Obregón
  • Sergio de Haro
  • Diego Jordano
  • Juan Fernández-Haeger
Article

Abstract

The study of butterfly movements has focused on dispersal behaviour in the framework of population persistence in heterogeneous landscapes. The ecological significance of routine movements has received less attention. These movements may be influenced by structural attributes of habitat patches or may reflect the distribution of food, mates, host plants or ecological interactions. The relative influence of structural and functional factors on flight patterns is poorly understood, partly because butterfly movements are often described by simplified representations of actual trajectories. Using high-resolution GPS tracking we obtained accurate trajectories of routine movements of Plebejus argus in a heterogeneous natural landscape. Habitat quality in patches was ranked according to the abundance of host and nectar plants as well as the abundance of nests of its mutualistic ant Lasius niger. Movements were slow and winding in high quality habitats whereas faster, straighter flights were observed in poor habitats. At edges, butterflies often crossed without any exploratory behaviour towards patches of better quality, suggesting they may use cues to detect resources at some distance. Conversely, individuals usually stayed in the patch after exploring edges with other patches of lower quality. However, scanning also preceded exits towards clearly unsuitable habitat, compatible with transfers to distant high-quality patches. We conclude that patterns of movement in P. argus were explained by spatial heterogeneity defined by functional rather than structural criteria. We also show that inexpensive handheld GPS receivers allow depicting detailed flying trajectories in open flat terrain revealing complex behavioural patterns.

Keywords

Butterflies habitat quality heterogeneous landscapes high-resolution GPS tracking routine movements 

Notes

Acknowledgments

This research was funded by Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía (grant P06-RNM-1903 to A. Rodríguez and RNM-232 to J. Fernández). We thank Laura Gil and Salvador Arenas for assistance in the field. The Doñana National Park and the Estación Biológica de Doñana-CSIC provided permission to access the study area and support during field work.

References

  1. Baguette M, Mennechez G (2004) Resource and habitat patches, landscape ecology and metapopulation biology: a consensual viewpoint. Oikos 106:399–403. doi: 10.1111/j.0030-1299.2004.13120.x CrossRefGoogle Scholar
  2. Baguette M, Van Dyck H (2007) Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landsc Ecol 22:117–129. doi: 10.1007/s10980-007-9108-4 CrossRefGoogle Scholar
  3. Batschelet E (1981) Circular statistics in biology. Academic Press, LondonGoogle Scholar
  4. Berggren Å, Birath B, Kindvall O (2002) Effect of corridors and habitat edges on dispersal behavior, movement rates, and movement angles in roesel’s bush-cricket (Metrioptera roeseli). Conserv Biol 16:1562–1569. doi: 10.1046/j.1523-1739.2002.01203.x CrossRefGoogle Scholar
  5. Beyer H L (2004) Hawth's Analysis Tools for ArcGIS Available at http://www.spatialecology.com/htools
  6. Boyce MS, Pitt J, Northrup JM, Morehouse AT, Knopff KH, Cristescu B, Stenhouse GB (2010) Temporal autocorrelation functions for movement rates from global positioning system radiotelemetry data. Phil Trans R Soc B 365:2213–2219. doi: 10.1098/rstb.2010.0080 PubMedCentralCrossRefPubMedGoogle Scholar
  7. Brommer JE, Fred MS (1999) Movement of the Apollo butterfly Parnassius apollo related to host plant and nectar plant patches. Ecol Entomol 24:125–131. doi: 10.1046/j.1365-2311.1999.00190.x CrossRefGoogle Scholar
  8. Cant E T, Smith A D, Reynolds D R, Osborne J L (2005) Tracking butterfly flight paths across the landscape with harmonic radar. Proc Nat Acad Sci USA 272:785–79. doi: 10.1098/rspb.2004.3002
  9. Conradt L, Roper TJ (2006) Nonrandom movement behavior at habitat boundaries in two butterfly species: implications for dispersal. Ecology 87:125–132. doi: 10.1890/05-0413 CrossRefPubMedGoogle Scholar
  10. Conradt L, Bodsworth EJ, Roper TJ, Thomas CD (2000) Non random dispersal in the butterfly Maniola jurtina: implications for metapopulation models. Proc R Soc Lond B 267:1505–1510. doi: 10.1098/rspb.2000 CrossRefGoogle Scholar
  11. Cooke SJ, Hinch SG, Wikelski M, Andrews RD, Kuchel LJ, Wolcott TG, Butler PJ (2004) Biotelemetry: a mechanistic approach to ecology. Trends Ecol Evol 19:334–343. doi: 10.1016/j.tree.2004.04.003 CrossRefPubMedGoogle Scholar
  12. Corbett A, Rosenheim JA (1996) Impact of a natural enemy overwintering refuge and its interaction with the surrounding landscape. Ecol Entomol 21:155–164. doi: 10.1111/j.1365-2311.1996.tb01182.x CrossRefGoogle Scholar
  13. Cormont A, Malinowska AH, Kostenko O, Radchuk V, Hemerik L, WallisDeVries MF, Verboom J (2011) Effect of local weather on butterfly flight behavior, movement, and colonization: significance for dispersal under climate change. Biodivers Conserv 20:483–503. doi: 10.1007/s10531-010-9960-4 CrossRefGoogle Scholar
  14. Junta de Andalucía (2004) Ortofotografía digital de Andalucía. Consejería Obras Públicas y Transportes. SevillaGoogle Scholar
  15. Delattre T, Burel F, Humeau A, Stevens VM, Vernon P, Baguette M (2010) Dispersal mood revealed by shifts from routine to direct flights in the meadow brown butterfly Maniola jurtina. Oikos 119:1900–1908. doi: 10.1111/j.1600-0706.2010.18615.x CrossRefGoogle Scholar
  16. Dennis RLH (2004) Butterfly habitats, broad-scale biotope affiliations, and structural exploitation of vegetation at finer scales: the matrix revisited. Ecol Entomol 29:744–752. doi: 10.1111/j.0307-6946.2004.00646.x CrossRefGoogle Scholar
  17. Dennis RLH, Sparks TH (2006) When is a habitat not a habitat? Dramatic resource use changes under differing weather conditions for the butterfly Plebejus argus. Biol Conserv 129:291–301. doi: 10.1016/j.biocon.2005.10.043 CrossRefGoogle Scholar
  18. Dover JW (1997) Conservation headlands: effects on butterfly distribution and behaviour. Agric Ecosyst Environ 63:31–49. doi: 10.1016/S0167-8809(96)01120-6 CrossRefGoogle Scholar
  19. Dover JW, Fry GLA (2001) Experimental simulation of some visual and physical components of a hedge and the effects on butterfly behavior in an agricultural landscape. Entomol Exp Appl 100:221–233. doi: 10.1046/j.1570-7458.2001.00867.x CrossRefGoogle Scholar
  20. ESRI. 2011. ArcGIS desktop: release 10. Environmental Systems Research Institute, Redlands, CAGoogle Scholar
  21. Fernández Haeger J, García García I, Amat JA (1976) Guía de las mariposas de doñana. Nat Hisp 6:12–28Google Scholar
  22. Franzén M, Nilsson SG (2012) Climate-dependent dispersal rates in metapopulations of burnet moths. J Insect Conserv 16:941–947. doi: 10.1007/s10841-012-9481-4 CrossRefGoogle Scholar
  23. Getz WM, Saltz D (2008) A framework for generating and analyzing movement paths on ecological landscapes. Proc Nat Acad Sci USA 105:19066–19071. doi: 10.1073/pnas.0801732105 PubMedCentralCrossRefPubMedGoogle Scholar
  24. Gutiérrez D, Seymour AS, Fernández P, Fernández Haeger J, Jordano D (2004) Estructura espacial y dispersión de las poblaciones de mariposas: modelos y experimentos con Plebejus argus en doñana. In: Fernández-Palacios JM, Morici C (eds) Ecología insular. Asociación Española de Ecología Terrestre, Cabildo Insular de La Palma, La Palma, Spain, pp. 147–179Google Scholar
  25. Gutiérrez D, Fernández P, Seymour AS, Jordano D (2005) Habitat distribution models: are mutualist distributions good predictors of their associates? Ecol Appl 15:3–18. doi: 10.1890/03-5344 CrossRefGoogle Scholar
  26. Haddad N M (1999) Corridor and distance effects on interpatch movements: a landscape experiment with butterflies. Ecol Appl 9:612–622. doi: 10.1890/1051-0761(1999)009[0612:CADEOI]2.0.CO;2
  27. Hawkes C (2009) Linking movement behaviour, dispersal and population processes: is individual variation a key? J Anim Ecol 78:894–906. doi: 10.1111/j.1365-2656.2009.01534.x CrossRefPubMedGoogle Scholar
  28. Hedin J, Ranius T (2002) Using radio telemetry to study dispersal of the beetle Osmoderma eremita, an inhabitant of tree hollows. Comput Electron Agric 35:171–180. doi: 10.1016/S0168-1699(02)00017-0 CrossRefGoogle Scholar
  29. Hill JK, Thomas CD, Lewis OT (1996) Effects of habitat patch size and isolation on dispersal by Hesperia comma butterflies: implications for metapopulation structure. J Anim Ecol 65:725–735CrossRefGoogle Scholar
  30. Jordano D, Rodríguez J, Thomas CD, Fernández Haeger J (1992) The distribution and density of a lycaenid butterfly in relation to Lasius ants. Oecologia 91:439–446CrossRefGoogle Scholar
  31. Kalarus K, Skórka P, Halecki W, Jirak A, Kajzer-Bonk J, Nowicki P (2013) Within-patch mobility and flight morphology reflect resource use and dispersal potential in the dryad butterfly Minois dryas. J Insect Conserv 17:1221–1228. doi: 10.1007/s10841-013-9603-7 CrossRefGoogle Scholar
  32. Kallioniemi E, Zannese A, Tinker JE, Franco AMA (2014) Inter-and intra-specific differences in butterfly behaviour at boundaries. Insect Conserv Divers 7:232–240. doi: 10.1111/icad.12046 CrossRefGoogle Scholar
  33. Kindvall O, Vessby K, Berggren A, Hartman G (1998) Individual mobility prevents an allee effect in sparse populations of the bush cricket Metrioptera roeseli: an experimental study. Oikos 81:449–457. doi: 10.2307/3546766 CrossRefGoogle Scholar
  34. Kissling WD, Pattemore DE, Hagen M (2014) Challenges and prospects in the telemetry of insects. Biol Rev 89:511–530. doi: 10.1111/brv.12065 CrossRefGoogle Scholar
  35. Korösi A, Örvössy N, Batáry P, Kövér S, Peregovits L (2008) Restricted within-habitat movement and time-constrained egg laying of female Maculinea rebeli butterflies. Oecologia 156:455–464. doi: 10.1007/s00442-008-0986-1 CrossRefPubMedGoogle Scholar
  36. Kuefler D, Hudgens B, Haddad NM, Morris WF, Thurgate N (2010) The conflicting role of matrix habitats as conduits and barriers for dispersal. Ecology 91:944–950. doi: 10.1890/09-0614.1 CrossRefPubMedGoogle Scholar
  37. Lewis O, Thomas C, Hill J, Brokes MI, Tobin Crane TP, Graneau YA, Mallet JLB, Rose OC (1997) Three ways of assessing metapopulation structure in the buttefly Plebejus argus. Ecol Entomol 22:283–293CrossRefGoogle Scholar
  38. Matter SF, Roland J (2002) An experimental examination of the effects of habitat quality on the dispersal and local abundance of the butterfly Parnassius smintheus. Ecol Entomol 27:308–316. doi: 10.1046/j.1365-2311.2002.00407.x CrossRefGoogle Scholar
  39. Merckx T, van Dyck H (2007) Habitat fragmentation affects habitat-finding ability of the speckled wood butterfly, Pararge aegeria L. Anim Behav 74:1029–1037. doi: 10.1016/j.anbehav.2006.12.020 CrossRefGoogle Scholar
  40. Muñoz-Reinoso JC (2001) Vegetation changes and groundwater abstraction in SW doñana, Spain. J Hydrol 242:197–209. doi: 10.1016/S0022-1694(00)00397-8 CrossRefGoogle Scholar
  41. Muriel SB, Kattan GH (2009) Effects of patch size and type of coffee matrix on ithomiine butterfly diversity and dispersal in cloud-forest fragments. Conserv Biol 23:948–956. doi: 10.1111/j.1523-1739.2009.01213.x CrossRefPubMedGoogle Scholar
  42. Nathan R, Getz W, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse P (2008) A movement ecology paradigm for unifying organismal movement research. Proc Nat Acad Sci USA 105:19052–19059. doi: 10.1073/pnas.0800375105 PubMedCentralCrossRefPubMedGoogle Scholar
  43. Otis DL, White GC (1999) Autocorrelation of location estimates and the analysis of radiotracking data. J Wildl Manag 63:1039–1044. doi: 10.2307/3802819 CrossRefGoogle Scholar
  44. Ovaskainen O, Smith AD, Osborne JL, Reynolds DR, Carreck NL, Martin AP, Niitepõl K, Hanski I (2008) Tracking butterfly movements with harmonic radar reveals an effect of population age on movement distance. Proc Nat Acad Sci USA 105:19090–19095. doi: 10.1073/pnas.0802066105 PubMedCentralCrossRefPubMedGoogle Scholar
  45. Revilla E, Wiegand T, Palomares F, Ferreras P, Delibes M (2004) Effects of matrix heterogeneity on animal dispersal: from individual behaviour to metapopulation-level parameters. Am Nat 164:E130–E153. doi: 10.1086/424767 CrossRefPubMedGoogle Scholar
  46. Ries L, Debinski DM (2001) Butterfly responses to habitat edges in the highly fragmented prairies of central Iowa. J Anim Ecol 70:840–852. doi: 10.1046/j.0021-8790.2001.00546.x CrossRefGoogle Scholar
  47. Riley JR, Smith AD, Reynolds DR, Edwards AS, Osborne JL, Williams IH, Carreck NL, Poppy GM (1996) Tracking bees with harmonic radar. Nature 379:29–30CrossRefGoogle Scholar
  48. Rodríguez, J (1991) Las mariposas del Parque Nacional de Doñana. Biología y Ecología de Cyaniris semiargus y Plebejus argus. PhD Thesis, Universidad de CórdobaGoogle Scholar
  49. Rodríguez J, Fernández Haeger J, Jordano D (1991) El ciclo biológico de Plebejus argus (Linnaeus, 1758) en el parque Nacional de doñana (SW de españa). SHILAP Rev Lepid 19:241–252Google Scholar
  50. Rodríguez J, Jordano D, Fernández Haeger J (1994) Spatial heterogeneity in a butterfly-host plant interaction. J Anim Ecol 63:31–38. doi: 10.2307/5580 CrossRefGoogle Scholar
  51. Rooney SM, Wolfe A, Hayden TJ (1998) Autocorrelated data in telemetry studies: time to independence and the problem of behavioural effects. Mammal Rev 28:89–98. doi: 10.1046/j.1365-2907.1998.00028.x CrossRefGoogle Scholar
  52. Schäpers A, Carlsson MA, Gamberale-Stille G, Janz N (2015) The role of olfactory cues for the search behavior of a specialist and generalist butterfly. J Insect Behav 28:77–87. doi: 10.1007/s10905-014-9482-0 CrossRefGoogle Scholar
  53. Schultz CB (1998) Dispersal behavior and its implications for reserve design in a rare Oregon butterfly. Conserv Biol 12:284–292. doi: 10.1111/j.1523-1739.1998.96266.x CrossRefGoogle Scholar
  54. Schultz CB, Crone EE (2001) Edge-mediated dispersal behavior in a prairie butterfly. Ecology 82:1879–1892. doi: 10.1890/0012-9658(2001)082[1879:EMDBIA]2.0.CO;2 CrossRefGoogle Scholar
  55. Schultz CB, Franco AMA, Crone EE (2012) Response of butterflies to structural and resource boundaries. J Anim Ecol 81:724–734. doi: 10.1111/j.1365-2656.2011.01947.x CrossRefPubMedGoogle Scholar
  56. Severns PM, Breed GA (2014) Behavioral consequences of exotic host plant adoption and the differing roles of male harassment on female movement in two checkerspot butterflies. Behav Ecol Sociobiol 68:805–814. doi: 10.1007/s00265-014-1693-z CrossRefGoogle Scholar
  57. Seymour AS, Gutierrez D, Jordano D (2003) Dispersal of the lycaenid Plebejus argus in response to patches of its mutualist ant Lasius niger. Oikos 103:162–174. doi: 10.1034/j.1600-0706.2003.12331.x CrossRefGoogle Scholar
  58. Skórka P, Nowicki P, Lenda M, Witek M, Sliwinska EB, Settele J, Woyciechowski M (2013) Different flight behaviour of the endangered scarce large blue butterfly Phengaris teleius (Lepidoptera: lycaenidae) within and outside its habitat patches. Landscape Ecol 28:533–546. doi: 10.1007/s10980-013-9855-3 CrossRefGoogle Scholar
  59. Söderström B, Hedblom M (2007) Comparing movement of four butterfly species in experimental grassland strips. J Insect Conserv 11:333–342. doi: 10.1007/s10841-006-9046-5 CrossRefGoogle Scholar
  60. Stevens VM, Turlure C, Baguette N (2010) A meta-analysis of dispersal in butterflies. Biol Rev 85:625–642. doi: 10.1111/j.1469-185X.2009.00119.x PubMedGoogle Scholar
  61. Swihart RK, Slade NA (1985) Testing for independence of observations in animal movements. Ecology 66:1176–1184. doi: 10.2307/1939170 CrossRefGoogle Scholar
  62. Swihart RK, Slade NA (1997) On testing for independence of animal movements. J Agric Biol Environ Statist 2:48–63CrossRefGoogle Scholar
  63. Turchin P, Odendaal FJ, Rausher MD (1991) Quantifying insect movement in the field. Environ Entomol 20:955–963. doi: 10.1093/ee/20.4.955 CrossRefGoogle Scholar
  64. Van Dyck H, Baguette M (2005) Dispersal behaviour in fragmented landscapes: routine or special movements? Basic Appl Ecol 6:535–545. doi: 10.1016/j.baae.2005.03.005 CrossRefGoogle Scholar
  65. Van Tongeren OFR (1995) Cluster analysis. In: Jongman RHG, ter Braak CJF, van Tongeren OFR (eds) Data analysis in community and landscape ecology. Cambridge University Press, Cambridge, pp. 174–212CrossRefGoogle Scholar
  66. Vinatier F, Chailleux A, Duyck P, Salmon F, Lescourret F, Tixier P (2010) Radiotelemetry unravels movements of a walking insect species in heterogeneous environments. Anim Behav 80:221–229. doi: 10.1016/j.anbehav.2010.04.022 CrossRefGoogle Scholar
  67. Weyer J, Schmitt T (2013) Knowing the way home: strong philopatry of a highly mobile insect species, Brenthis ino. J Insect Conserv 17:1197–1208. doi: 10.1007/s10841-013-9601-9 CrossRefGoogle Scholar
  68. Woodroffe R (2011) Ranging behaviour of African wild dog packs in a human-dominated landscape. J Zool 283:88–97. doi: 10.1111/j.1469-7998.2010.00747.x CrossRefGoogle Scholar
  69. Zar J H (1984) Biostatistical analysis. Prentice-Hall Inc, Englewood Cliffs, New JerseyGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Pilar Fernández
    • 1
    Email author
  • Alejandro Rodríguez
    • 2
  • Rafael Obregón
    • 1
  • Sergio de Haro
    • 1
  • Diego Jordano
    • 1
  • Juan Fernández-Haeger
    • 1
  1. 1.Department of Botany, Ecology and Plant PhysiologyUniversity of CórdobaCórdobaSpain
  2. 2.Department of Conservation BiologyEstación Biológica de Doñana-CSICSevillaSpain

Personalised recommendations