Journal of Insect Behavior

, Volume 27, Issue 3, pp 333–345 | Cite as

Response of the Praying Mantis, Sphodromantis Viridis, to Target Change in Size and to Target Visual Occlusion

  • Tomer Baum
  • Igor Katsman
  • Ehud Rivlin
  • Meir Broza
  • Michael Moshkovich
  • Gadi Katzir


Mantises (Mantodea, Mantidae) visually detect insect prey and capture it by a ballistic strike of their specialized forelegs. We tested predatory responses of female mantis, Sphodromantis viridis, to computer generated visual stimuli, to determine the effects of (i) target size and velocity (ii) discrete changes in target size and (iii) visual occlusion. Maximal predatory responses were elicited by stimuli that (i) subtended ~20°–23° horizontally and ~16°–19° vertically, at the eye, and moved across the screen at angular velocities of ~46°–119°/s, (ii) increased in size in a stepwise manner, with step duration ≥0.8 s, while stimuli decreasing in size elicited only peering movements, (iii) Stimuli disappearing gradually behind a virtual occlusion elicited one or more head saccades but not actual interception.


Praying mantis Sphodromantis viridis vision stepwise target size change visual occlusion predatory strikes 



This research was funded by the Israel Science Foundation (ISF).


  1. Boeddeker N, Kern R, Egelhaaf M (2003) Chasing a dummy target: moving objects can be resolved even at high retinal velocities, smooth pursuit and velocity control in male blowflies. Proc R Soc Lond B 270:393–399CrossRefGoogle Scholar
  2. Collett TS, Land MF (1975) Visual control of flight behaviour in the hoverfly Syritta pipiens L. J Comp Physiol 99:1–66CrossRefGoogle Scholar
  3. Collett TS, Land MF (1978) How hoverflies compute interception courses. J Comp Physiol 125:191–204CrossRefGoogle Scholar
  4. D’Eath RB (1998) Can video images imitate real stimuli in animal behaviour experiments? Biol Rev 73:267–292CrossRefGoogle Scholar
  5. Ewert JP (1987) Neuroethology of releasing mechanisms: prey catching in toads. Behav Brain Sci 10:337–405CrossRefGoogle Scholar
  6. Fiset S, Doré FY (2006) Duration of cats’ (Felis catus) working memory for disappearing objects. Anim Cogn 9:62–70PubMedCrossRefGoogle Scholar
  7. Fiset S, Gagnon S, Beaulieu C (2000) Spatial encoding of hidden objects in dogs (Canis familiaris). J Comp Psychol 114:315–324PubMedCrossRefGoogle Scholar
  8. Gonka MD, Laurie TJ, Prete FR (1999) Responses of movement sensitive visual interneurons to prey-like stimuli in the praying mantis Sphodromantis lineola (Burmeister). Brain Behav Evol 54:243–262PubMedCrossRefGoogle Scholar
  9. Gray JR, Blincow E, Robertson RM (2010) A pair of motion-sensitive neurons in the locust encode approaches of a looming object. J Comp Physiol A 196:927–938CrossRefGoogle Scholar
  10. Howland HC (1974) Optimal strategies for predator avoidance: the relative importance of speed and maneuverability. J Theor Biol 134:56–76Google Scholar
  11. Iwasaki T (1990) Predatory Behavior of the praying mantis. Tenodera aridifolia I. effect of prey size on prey recognition. J Ethol 8:75–79CrossRefGoogle Scholar
  12. Krachun C, Plowright CMS (2007) When pigeons in motion lose sight of their food: behaviour on visible displacement tasks revisited. Can J Zool 85:644–652CrossRefGoogle Scholar
  13. Kral K (1998) Side-to-side head movements to obtain motion depth cues: a short review of research on the praying mantis. Behav Process 43:71–77CrossRefGoogle Scholar
  14. Kral K (2003) Behavioural-analytical studies of the role of head movements in depth perception in insects, birds and mammals. Behav Process 64:1–12CrossRefGoogle Scholar
  15. Kral K, Poteser M (1997) Motion parallax as a source of distance information in locusts and mantids. J Insect Behav 10:145–163CrossRefGoogle Scholar
  16. Land MF (1999) Motion and vision: why animals move their eyes. J Comp Physiol A 185:341–352PubMedCrossRefGoogle Scholar
  17. Land MF, Nilsson DE (2002) Animal eyes. Oxford University Press, OxfordGoogle Scholar
  18. Olberg RM, Worthington AH, Venator KR (2000) Prey pursuit and interception in dragonflies. J Comp Physiol A 186:155–162PubMedCrossRefGoogle Scholar
  19. Olberg RM, Seaman RC, Coats MI, Henry AF (2007) Eye movements and target fixation during dragonfly prey-interception flights. J Comp Physiol 193:685–693CrossRefGoogle Scholar
  20. Poteser M, Kral K (1995) Visual distance discrimination between stationary targets in praying mantis: an index of the use of motion parallax. J Exp Biol 198:2127–2137PubMedGoogle Scholar
  21. Prete FR (1992) The effects of background pattern and contrast on prey discrimination by the praying mantis Sphodromantis lineola (Burr.). Brain Behav Evol 40:311–320PubMedCrossRefGoogle Scholar
  22. Prete FR (1993) Stimulus direction and retinal image location affect appetitive response to computer generated stimuli by the praying mantis Sphodromantis lineola (Burr.). Vis Neurosci 10:997–1005PubMedCrossRefGoogle Scholar
  23. Prete FR, Mahaffey RJ (1993) Appetitive responses to computer generated visual stimuli by the praying mantis Sphodromantis lineola (Burr.). Vis Neurosci 10:669–679PubMedCrossRefGoogle Scholar
  24. Prete FR, McLean T (1996) Responses to moving small-field stimuli by the praying mantis, Sphodromantis lineola (Bur.). Brain Behav Evol 47:52–54CrossRefGoogle Scholar
  25. Prete FR, Placek PJ, Wilson MA, Mahaffey RJ, Nemcek RR (1993) The effects of stimulus speed and order of presentation on the discrimination of visual stimuli representing prey by the praying mantis, Sphodromantis lineola (Bur.). Brain Behav Evol 42:281–294PubMedCrossRefGoogle Scholar
  26. Prete FR, Hurd LE, Branstrator D, Johnson A (2002) Responses to computer generated visual stimuli by the male praying mantis Sphodromantis lineola (Burmeister). Anim Behav 63:503–510CrossRefGoogle Scholar
  27. Prete FR, Komito JL, Domínguez S, Svenson G, López YL, Guillen A, Bogdanivich N (2011) Visual stimuli that elicit appetitive behaviors in three morphologically distinct species of praying mantis. J Comp Physiol A 197:877–894CrossRefGoogle Scholar
  28. Regolin L, Vallortigara G, Zanforlin M (1995) Detour behaviour in the domestic chick: Searching for a disappearing prey or a disappearing social partner. Anim Behav 50:203–211CrossRefGoogle Scholar
  29. Rind FC, Santer RD (2004) Collision avoidance and a looming sensitive neuron: size matters but biggest is not necessarily best. Biol Lett 271:27–29Google Scholar
  30. Rossel S (1980) Foveal fixation and tracking in the praying mantis. J Comp Physiol 139:307–331CrossRefGoogle Scholar
  31. Rossel S (1983) Binocular stereopsis in an insect. Nature (London) 302:821–822CrossRefGoogle Scholar
  32. Santer RD, Rind FC, Stafford R, Simmons PJ (2006) Role of an identified looming sensitive neuron in triggering a flying locust’s escape. J Neurophysiol 95:3391–3400PubMedCrossRefGoogle Scholar
  33. Tinbergen N (1951) The study of instinct. Oxford University Press, OxfordGoogle Scholar
  34. Weihs D, Webb PW (1984) Optimal avoidance and evasion tactics in predator–prey interactions. J Theor Biol 106:189–206CrossRefGoogle Scholar
  35. Wicklein M, Strausfeld NJ (2000) Organization and significance of neurons that detect change of visual depth in the hawk moth Manduca sexta. J Comp Neurol 424:356–376PubMedCrossRefGoogle Scholar
  36. Yamamoto K, Nakata M, Nakagawa H (2003) Input and output characteristics of collision avoidance behavior in the frog Rana catesbiana. Brain Behav Evol 62:201–211PubMedCrossRefGoogle Scholar
  37. Yamawaki Y (2000a) Saccadic tracking of a light grey target in the mantis, Tenodera aridifolia. J Insect Physiol 46:203–210PubMedCrossRefGoogle Scholar
  38. Yamawaki Y (2000b) Effect of luminance, size and angular velocity on the recognition of non-locomotive prey models by the praying mantis. J Ethol 18:85–90CrossRefGoogle Scholar
  39. Yamawaki Y, Toh Y (2003) Response properties of visual interneurons to motion stimuli in the praying mantis, Tenodera aridifolia. Zool Sci (Tokyo) 20:819–832CrossRefGoogle Scholar
  40. Yamawaki Y, Toh Y (2009a) A descending contralateral directionally selective movement detector in the praying mantis Tenodera aridifolia. J Comp Physiol A 195:1131–1139CrossRefGoogle Scholar
  41. Yamawaki Y, Toh Y (2009b) Responses of descending neurons to looming stimuli in the praying mantis Tenodera aridifolia. J Comp Physiol A 195:253–264CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Tomer Baum
    • 3
  • Igor Katsman
    • 1
  • Ehud Rivlin
    • 1
  • Meir Broza
    • 2
  • Michael Moshkovich
    • 1
  • Gadi Katzir
    • 2
    • 4
  1. 1.Department of Computer SciencesThe TechnionHaifaIsrael
  2. 2.Department of BiologyOranim-University of HaifaTivonIsrael
  3. 3.Department of MathematicsThe TechnionHaifaIsrael
  4. 4.Department of Evolutionary and Environmental BiologyUniversity of HaifaHaifaIsrael

Personalised recommendations