Advertisement

Journal of Insect Behavior

, Volume 26, Issue 5, pp 623–633 | Cite as

Plant Size-dependent Escaping Behavior of Gregarious Nymphs of the Desert Locust, Schistocerca gregaria

  • Koutaro Ould Maeno
  • Cyril Piou
  • Sidi Ould Ely
  • Mohamed Abdallahi Ould Babah
  • Benjamin Pélissié
  • Sid’Ahmed Ould Mohamed
  • Mohamed EL Hacen Jaavar
  • Mohamed Etheimine
  • Satoshi Nakamura
Article

Abstract

The present study involves the tracking of marching bands of more than 300,000 gregarious nymphs of the desert locust, Schistocerca gregaria, to examine shelter plant preference and how species and size of shelter plants and nymphal group sizes jointly influence the escaping behavior of 4th- and 5th-instar gregarious nymphs. Field observations are conducted during daytime and night-time in the Sahara Desert in Mauritania. Three dominant plant species have been identified at the survey site: Hyoscyamus muticus, Panicum turgidum, and Nucularia perrini. The smallest mean plant size among the three plant species is H. muticus. Gregarious nymphs perch on all the three plant species irrespective of time, and form various sizes of groups ranging from <10 to >10,000 nymphs. Groups of gregarious locusts perching on the plants show either escaping or sheltering behavior in response to an approaching observer. Percentages of nymphal groups showing escaping behavior for H. muticus, P. turgidum and N. perrini are 96.4, 47.6 and 19.5 %, respectively. Defensive behavior is not affected by nymphal group size but by species and size of shelter plants. Nymphal groups tend to show escaping behavior when their perching plants are relatively small. No groups escape from their perching plants during night. These results might indicate that gregarious nymphs do not have a strong shelter plant preference and change their defensive behavior depending on species and size of sheltering plants and light conditions.

Keywords

Anti-predator strategy escaping behavior density-dependent phase polyphenism gregarious locusts Schistocerca gregaria 

Notes

Acknowledgements

We would like to thank Mrs. Tijany and Lemine for their assistance with the field survey. Thanks are also due to Drs. D. Whitman (Illinois State Univ., U.S.A.), R. T. Ichiki (JIRCAS) and J.-M. Vassal (CIRAD) for encouragement and stimulating discussion. This study was funded by the Japan Society for the Promotion for Science through a research abroad fellowship for PD (No. 128·2011), Inoue Zaidan and Narishige Zoological Science Award to K.O.M and supported by Grants-in-Aid for Scientific Research (KAKENHI) Grant Number 24405027 from Japan Society for the Promotion of Science (JSPS). An anonymous referee significantly improved the manuscript.

References

  1. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petran BN, Csaki F (eds) International Symposium on Information Theory. Akademiai Kiadi, Budapest, p 267Google Scholar
  2. Anstey ML, Rogers SM, Ott SR, Burrows M, Simpson SJ (2009) Serotonin mediates behavioural gregarization underlying swarm formation in desert locusts. Science 323:627–630PubMedCrossRefGoogle Scholar
  3. Applebaum SW, Heifetz Y (1999) Density-dependent physiological phase in insects. Ann Rev Entomol 44:317–341CrossRefGoogle Scholar
  4. Babah MAO (1997) Strategy for controlling the desert locust in Mauritania. In: Krall S, Peveling R, Ba Diallo D (eds) New strategies in locust control. Birkhaeuser Verlag, Basel, pp 487–492CrossRefGoogle Scholar
  5. Babah EMA (2010) Biogéographie du Criquet pèlerin en Mauritanie. Hermann, Paris, pp 1–286Google Scholar
  6. Babah EMA (2011) Brief overview on the desert locust problem. Tunis J Plant Prot 6: Guest editorial. pp 1–3Google Scholar
  7. Babah MAO, Sword GA (2004) Linking locust gregarization to local resource distribution patterns across a large spatial scale. Environ Entomol 33:1577–1583CrossRefGoogle Scholar
  8. Barry JP, Celles JC (1991a) Flore de Mauritanie. Tome 1. Université de Nice/ISS de Nouakchott, pp 1–359Google Scholar
  9. Barry JP, Celles JC (1991b) Flore de Mauritanie. Tome 2. Université de Nice/ISS de Nouakchott, pp 1–550Google Scholar
  10. Bazazi S, Buhl J, Hale JJ, Anstey ML, Sword GA, Simpson SJ, Couzin ID (2008) Collective motion and cannibalism in locust migratory bands. Curr Biol 18:735–739PubMedCrossRefGoogle Scholar
  11. Buhl J, Sumpter DJT, Couzinm ID, Hale JJ, Despland E, Miller ER, Simpson SJ (2006) From disorder to order in marching locusts. Science 312:1401–1406CrossRefGoogle Scholar
  12. Chapman RF (1990) Food selection. In: Chapman RF, Joern A (eds) Biology of grasshoppers. Wiley, New York, pp 39–72Google Scholar
  13. Culmsee H (2002) The habitat functions of vegetation in relation to the behavior of the desert locust Schistocerca gregaria (Forskål) (Acrididae: Orthoptera): a study in Mauritania (West Africa). Phytocoenologia 32:645–664CrossRefGoogle Scholar
  14. Despland E, Simpson SJ (2005) Food choices of solitarious and gregarious locusts reflect cryptic and aposematic antipredator strategies. Anim Behav 69:471–479CrossRefGoogle Scholar
  15. Eggleston DB, Lipcius RN (1992) Shelter selection by spiny lobster under variable predation risk, social conditions, and shelter size. Ecology 73:992–1011CrossRefGoogle Scholar
  16. Ellis PE (1956) Differences in social aggregation in two species of locust. Nature 178:1007CrossRefGoogle Scholar
  17. Ellis PE, Ashall C (1957) Field studies on diurnal behaviour, movement and aggregation in the desert locust (Schistocerca gregaria Forskål). Anti-Locust Bull 25:1–94Google Scholar
  18. Emmett JD, Mark EH (1991) Food and shelter as determinants of food choice by an herbivorous marine amphipod. Ecology 72:1286–1298CrossRefGoogle Scholar
  19. Gillet SD, Hogarth PJ, Jane Noble FE (1979) The response of predators to varying densities of gregaria locust nymphs. Anim Behav 27:592–596CrossRefGoogle Scholar
  20. Hassenstein B, Hustert J (1999) Hiding responses of locusts to approaching objects. J Exp Biol 202:1701–1710PubMedGoogle Scholar
  21. Jaavar BME (2011) Contribution à l’étude descriptive et causale de la chorologie du Criquet pèlerin (Schistocerca gregaria Forskål, 1775) en Mauritanie. Ministére de L’enseignement Supérieur et de la Recherche. Paris, pp 1–114Google Scholar
  22. Kennedy JS (1939) The behaviour of the desert locust (Schistocerca gregaria (Forsk.) (Orthopt.) in an outbreak centre. Ecol Entomol 89:385–542Google Scholar
  23. Lazarus J (1979) The early warning function of flocking in birds: an experimental study. Anim Behav 27:855–865CrossRefGoogle Scholar
  24. Lester LR, Grach C, Pener MP, Simpson SJ (2005) Stimuli inducing gregarious colouration and behaviour in nymphs of Schistocerca gregaria. J Insect Physiol 51:737–747CrossRefGoogle Scholar
  25. Maeno OK, Piou C, Ely OS, Mohamed SO, Jaavar MH, Babah MAO, Nakamura S (2012) Field observations of the sheltering behavior of the solitarious phase of the desert locust, Schistocerca gregaria, with particular reference to antipredator strategies. Jpn Agric Res Q 46:339–345CrossRefGoogle Scholar
  26. Morley-Davies J, Moore D, Prior C (1996) Screening of Metarhizium and Beauveria spp. conidia with exposure to simulated sunlight and a range of temperatures. Mycol Res 100:31–38CrossRefGoogle Scholar
  27. Pener MP (1991) Locust phase polymorphism and its endocrine relations. Adv Insect Phys 23:1–79CrossRefGoogle Scholar
  28. Pener MP, Simpson SJ (2009) Locust phase polyphenism: an update. Adv Insect Phys 36:1–272CrossRefGoogle Scholar
  29. Pener MP, Yerushalmi Y (1998) The physiology of locust phase polymorphism: an update. J Insect Physiol 44:365–377PubMedCrossRefGoogle Scholar
  30. R DEVELOPMENT CORE TEAM. (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. <http://www.R-project.org>
  31. Roffey J, Popov GB (1968) Environmental and behavioural processes in a desert locust outbreak. Nature 219:446–450CrossRefGoogle Scholar
  32. Roffey J, Popov GB, Hemming CF (1970) Outbreaks and recession populations of the desert locust, Schistocerca gregaria (Forskål). Bull Entomol Res 59:675–680CrossRefGoogle Scholar
  33. Rogers SM, Matheson T, Despland E, Dodgson T, Burrows M, Simpson SJ (2003) Mechanosensory-induced behavioural gregarization in the desert locust Schistocerca gregaria. J Exp Biol 206:3991–4002PubMedCrossRefGoogle Scholar
  34. Simpson SJ, Despland E, Hägele BF, Dodgson T (2001) Gregarious behavior in desert locusts is evoked by touching their back legs. Proc Natl Acad Sci USA 98:3895–3897PubMedCrossRefGoogle Scholar
  35. Stower WJ (1963) Photographic techniques for the analysis of locust ‘hopper’ behavior. Anim Behav 111:198–205CrossRefGoogle Scholar
  36. Sword GA (2003) To be or not to be a locust? A comparative analysis of behavioural phase change in nymphs in Schistocerca americana and Schistocerca gregaria. J Insect Physiol 49:709–717PubMedCrossRefGoogle Scholar
  37. Sword GA, Simpson SJ, El Hadi OTM, Wilps H (2000) Density-dependent aposematism in the desert locust. Proc R Soc Lond B Biol Sci 267:63–68CrossRefGoogle Scholar
  38. Sword GA, Lorch PD, Gwynne DT (2005) Migratory bands give crickets protection. Nature 433:703PubMedCrossRefGoogle Scholar
  39. Uvarov B (1966) Grasshoppers and locusts, vol 1. Cambridge Univ. Press, U.KGoogle Scholar
  40. Uvarov B (1977) Grasshoppers and locusts, vol 2. Centre for Overseas Pest Research, LondonGoogle Scholar
  41. Whiteman DW (1990) Grasshopper chemical communication. In: Chapman RF, Joern A (eds) Biology of grasshoppers. Wiley, New York, pp 375–391Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Koutaro Ould Maeno
    • 1
  • Cyril Piou
    • 3
  • Sidi Ould Ely
    • 1
  • Mohamed Abdallahi Ould Babah
    • 1
  • Benjamin Pélissié
    • 3
  • Sid’Ahmed Ould Mohamed
    • 1
  • Mohamed EL Hacen Jaavar
    • 1
  • Mohamed Etheimine
    • 1
  • Satoshi Nakamura
    • 2
  1. 1.The Mauritanian Desert Locust Centre: Centre National de Lutte Antiacridienne (CNLA)NouakchottMauritania
  2. 2.Japan International Research Center for Agricultural Sciences (JIRCAS)TsukubaJapan
  3. 3.CIRAD, UPR Bioagresseurs analyse et maîtrise du risqueMontpellierFrance

Personalised recommendations