Journal of Insect Behavior

, Volume 26, Issue 4, pp 453–465 | Cite as

A Device to Study the Behavioral Responses of Zooplankton to Food Quality and Quantity

  • T. Bukovinszky
  • N. R. Helmsing
  • R. A. Grau
  • E. S. Bakker
  • T. M. Bezemer
  • M. Vos
  • H. Uittenhout
  • A. M. Verschoor
Article

Abstract

In order to explore the behavioral mechanisms underlying aggregation of foragers on local resource patches, it is necessary to manipulate the location, quality and quantity of food patches. This requires careful control over the conditions in the foraging arena, which may be a challenging task in the case of aquatic resource-consumer systems, like that of freshwater zooplankton feeding on suspended algal cells. We present an experimental tool designed to aid behavioral ecologists in exploring the consequences of resource characteristics for zooplankton aggregation behavior and movement decisions under conditions where the boundaries and characteristics (quantity and quality) of food patches can be standardized. The aggregation behavior of Daphnia magna and D. galeata x hyalina was tested in relation to i) the presence or absence of food or ii) food quality, where algae of high or low nutrient (phosphorus) content were offered in distinct patches. Individuals of both Daphnia species chose tubes containing food patches and D. galeata x hyalina also showed a preference towards food patches of high nutrient content. We discuss how the described equipment complements other behavioral approaches providing a useful tool to understand animal foraging decisions in environments with heterogeneous resource distributions.

Keywords

Foraging behavior behavioral choice food preference Daphnia flow-through vessel 

Notes

Acknowledgements

The authors are grateful for the constructive comments of two anonymous reviewers. This is Publication 5371 of the Netherlands Institute of Ecology (NIOO-KNAW).

References

  1. Agresti A (2002) Categorical data analysis, 2nd edn. John Wiley & Sons, New YorkCrossRefGoogle Scholar
  2. Beklioglu M, Gozen AG, Yıldırım F, Zorlu P, Onde S (2008) Impact of food concentration on diel vertical migration behaviour of Daphnia pulex under fish predation risk. Hydrobiologia 614:321–327CrossRefGoogle Scholar
  3. Bukovinszky T, Gols R, Hemerik L, Van Lenteren JC, Vet LEM (2007) Time allocation of a parasitoid foraging in heterogeneous vegetation: implications for host-parasitoid interactions. J Anim Ecol 76:845–853PubMedCrossRefGoogle Scholar
  4. Brewer MC, Dawidowicz P, Dodson SI (1999) Interactive effects of fish kairomone and light on Daphnia escape behavior. J Plankton Res 21:1317–1335CrossRefGoogle Scholar
  5. Cuddington KM, McCauley E (1994) Food-dependent aggregation and mobility of the water fleas Ceriodaphnia dubia and Daphnia pulex. Canadian Journal of Zoology 72:1217–1226CrossRefGoogle Scholar
  6. De Meester L, Weider LJ (1999) Depth selection behavior, fish kairomones, and the life histories of Daphnia hyalina x galeata hybrid clones. Limnol Oceanogr 44:1248–1258CrossRefGoogle Scholar
  7. DeMott WR, Pape BJ (2005) Stoichiometry in an ecological context: testing for links between Daphnia P-content, growth rate and habitat preference. Oecologia 142:20–27PubMedCrossRefGoogle Scholar
  8. Gerhardt A, Janssens de Bisthoven L, Schmidt S (2006) Automated recording of vertical negative phototactic behaviour in Daphnia magna Straus (Crustacea). Hydrobiologia 559:433–441CrossRefGoogle Scholar
  9. Gols R, Bukovinszky T, Hemerik L, van Lenteren JC, Vet LEM (2005) Reduced foraging efficiency of a parasitoid under habitat complexity: implications for population stability and species coexistence. J Anim Ecol 74:1059–1068CrossRefGoogle Scholar
  10. Havel JE, Lampert W (2006) Habitat partitioning of native and exotic Daphnia in gradients of temperature and food: mesocosm experiments. Freshw Biol 51:487–498CrossRefGoogle Scholar
  11. Johnsen GH, Jakobsen PJ (1987) The effect of food limitation on vertical migration in Daphnia longispina. Limnol Oceanogr 32:873–880CrossRefGoogle Scholar
  12. Kessler K (2004) Distribution of Daphnia in a trade-off between food and temperature: individual habitat choice and time allocation. Freshw Biol 49:1220–1229CrossRefGoogle Scholar
  13. Kilham SS, Kreeger DA, Lynn SG, Goulden CE, Herrera L (1998) COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia 377:147–159CrossRefGoogle Scholar
  14. Kleinbaum DG (1996) Survival analysis: A self-learning text. Springer, New YorkCrossRefGoogle Scholar
  15. Klüttgen B, Dulmer U, Engels M, Ratte HT (1994) ADaM, an artificial fresh-water for the culture of zooplankton. Water Res 28:743–746CrossRefGoogle Scholar
  16. Lard M, Bäckman J, Yakovleva M, Danielsson B, Hansson L-A (2010) Tracking the Small with the Smallest – Using Nanotechnology in Tracking Zooplankton. PLoS One 5:e13516PubMedCrossRefGoogle Scholar
  17. Leibold MA (1990) Resources and predators can affect the vertical distributions of zooplankton. Limnol Oceanogr 35:938–944CrossRefGoogle Scholar
  18. McCullagh P, Nelder JA (1989) Generalized Linear Models. Chapman & Hall, LondonGoogle Scholar
  19. Nealy J, Cash K, McCauley E (1994) Behavioural aggregation of Daphnia pulex in response to food gradients. Funct Ecol 8:377–383CrossRefGoogle Scholar
  20. Reichwaldt ES (2008) Food quality influences habitat selection in Daphnia. Freshw Biol 53:872–883CrossRefGoogle Scholar
  21. Rozen F, Lürling M (2001) Behavioural response of Daphnia to olfactory cues from food, competitors and predators. J Plankton Res 23:797–808CrossRefGoogle Scholar
  22. Schatz GS, McCauley E (2007) Foraging behavior by Daphnia in stoichiometric gradients of food quality. Oecologia 153:1021–1030PubMedCrossRefGoogle Scholar
  23. Turlings TCJ, Davison AC, Tamo C (2004) A six-arm olfactometer permitting simultaneous observation of insect attraction and odour trapping. Physiol Entomol 29:45–55CrossRefGoogle Scholar
  24. Van Gool E, Ringelberg J (1998) Light-induced migration behaviour of Daphnia modified by food and predator kairamones. Anim Behav 56:741–747CrossRefGoogle Scholar
  25. Verschoor AM, Zadereev YS, Mooij WM (2007) Infochemical-mediated trophic interactions between the rotifer Brachionus calyciflorus and its food algae. Limnol Oceanogr 52:2109–2119CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • T. Bukovinszky
    • 1
    • 2
    • 5
  • N. R. Helmsing
    • 1
  • R. A. Grau
    • 1
  • E. S. Bakker
    • 1
  • T. M. Bezemer
    • 2
  • M. Vos
    • 4
  • H. Uittenhout
    • 1
  • A. M. Verschoor
    • 1
    • 3
  1. 1.Department of Aquatic EcologyNetherlands Institute of Ecology (NIOO-KNAW)WageningenThe Netherlands
  2. 2.Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO-KNAW)WageningenThe Netherlands
  3. 3.Ingrepro b.v.BorculoThe Netherlands
  4. 4.Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
  5. 5.Resource Ecology GroupWageningen UniversityWageningenThe Netherlands

Personalised recommendations