Advertisement

Journal of Insect Behavior

, Volume 25, Issue 1, pp 12–23 | Cite as

Sexual Differences in the Behavior of the Harvestman Leiobunum vittatum (Opiliones, Sclerosomatidae) Towards Conspecific Cues

Article

Abstract

Preliminary observations of the harvestman Leiobunum vittatum found that individuals rub their bodies against the substrate, presenting the possibility of chemical marking. To determine whether or not L. vittatum individuals can detect substrate-borne chemical cues, we compared responses of L. vittatum males and females to substrate-borne male and female cues. We found that individuals of L. vittatum do respond to conspecific cues and that their responses are sex-specific. In response to substrate-borne conspecific cues, male L. vittatum spent more time, engaged in more scraping with their sensory legs I, and engaged in pedipalpal tapping more often in the presence versus absence of conspecific cues (male and female equally). Furthermore, in the presence of conspecific cues, males engaged in two behaviors never observed in females—(a) “fast approach” and (b) “jerking”, the latter of which was never observed in the presence of cricket cues. In contrast to males, females did not spend more time on conspecific cues, but did spend more time tapping their pedipalps in the presence of male vs female cues, suggesting an ability to distinguish between them. A final experiment explored the possibility that females could discriminate among males of varying histories of agonistic interactions based upon their chemical cues. We found no support for this hypothesis. Our results demonstrate that L. vitattum do respond to conspecific cues, and introduce the possibility that intraspecific communication may be mediated in part by chemical cues.

Keywords

Pheromones chemical communication Arachnida leiobuninae kairomones 

Notes

Acknowledgements

Thanks to J. Shultz for kindly identifying the harvestmen, and to D. Wilgers, K. Santer, K. Fowler-Finn, R. Santer and S. Schwartz for helping with spider and harvestmen collection and for helpful discussions. Special thanks to K. Santer for helping with scoring tapes. RHW was supported by Coordenação de Aperfeiçoamento de pessoal de Nível Superior (CAPES). Prashant Sharma and two anonymous reviewers carefully revised the manuscript.

References

  1. Agosta WC (1992) Chemical communication—the language of pheromones. New York Scientific American, NYGoogle Scholar
  2. Akino T, Yamaoka R (2005) Trail discrimination signal of Lasius japonicus (Hymenoptera: Formicidae). Chemoecology 15:21–30CrossRefGoogle Scholar
  3. Barth FG (2002) A spider’s world: senses and behavior. Springer, BerlinGoogle Scholar
  4. Bradbury JW, Vehrencamp SL (1998) Principles of animal communication. Sinauer, SunderlandGoogle Scholar
  5. Breithaupt T, Thiel M (2010) Chemical communication in crustaceans. Springer, BerlinGoogle Scholar
  6. Brownell P (2001) Sensory ecology and orientational behaviors. In: Brownell P, Polis G (eds) Scorpion biology and research. Oxford University Press, New York, pp 159–183Google Scholar
  7. Bucherl W (1955) Escorpiões e escorpionismo no Brasil. Mem Instit But 27:121–155Google Scholar
  8. Delago A, Aonuma H (2006) Experience-based agonistic behavior in female crickets, Gryllus bimaculatus. Zool Sci 23:775–783PubMedCrossRefGoogle Scholar
  9. Donaldson ZR, Grether GF (2007) Tradition without social learning: scent-mark-based communal roost formation in a Neotropical harvestman (Prionostemma sp.). Behav Ecol Sociobiol 61:801–809CrossRefGoogle Scholar
  10. Elias DO, Kasumovic MM, Punzalan D, Andrade MCB, Mason AC (2008) Assessment during aggressive contests between male jumping spiders. Anim Behav 76:901–910PubMedCrossRefGoogle Scholar
  11. Fischer M, Čokl LA, Ramires EN, Marques-da-Silva E, Delay C, Fontana JD, Donatti L, Schneider VF, Marques FA (2009) Sound is involved in multimodal communication of Loxosceles intermedia Mello-Leitão, 1934 (Araneae; Sicariidae). Behav Proc 82:236–243CrossRefGoogle Scholar
  12. Foelix RF (1996) Biology of spiders, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  13. Gaffin DD, Brownell PH (2001) Chemosensory behavior and physiology. In: Brownell P, Polis G (eds) Scorpion biology and research. Oxford University Press, New York, pp 184–203Google Scholar
  14. Gaskett AC (2007) Spider sex pheromones: emission, reception, structures, and functions. Biol Rev 82:27–48PubMedCrossRefGoogle Scholar
  15. Gibson JS, Uetz GW (2008) Seismic communication and mate choice in wolf spiders: components of male seismic signals and mating success. Anim Behav 75:1253–1262CrossRefGoogle Scholar
  16. Grether GF, Donaldson ZR (2006) Communal roost site selection in a Neotropical harvestman: habitat limitation versus tradition. Ethology 113:290–300CrossRefGoogle Scholar
  17. Hauser MD (1997) The evolution of communication. MIT, CambridgeGoogle Scholar
  18. Haupt J (1996) Fine structure of the trichobothria and their regeneration during moulting in the whip scorpion Typopeltis crucifer Pocock, 1894. Acta Zool 77:123–136CrossRefGoogle Scholar
  19. Hebets EA (2003) Subadult experience influences adult mate choice in an arthropod: exposed female wolf spiders prefer males of a familiar phenotype. Proc Nat Acad Sci 100:13390–13395PubMedCrossRefGoogle Scholar
  20. Hebets EA (2008) Seismic signal dominance in the multimodal courtship display of the wolf spider Schizocosa stridulans Stratton 1991. Behav Ecol 19:1250–1257PubMedCrossRefGoogle Scholar
  21. Hebets EA, Elias DO, Mason AC, Miller GL, Stratton GE (2008) Substrate-dependent signalling success in the wolf spider, Schizocosa retrorsa. Anim Behav 75:605–615CrossRefGoogle Scholar
  22. Hebets EA, Cuasay K, Rivlin PK (2006) The role of visual ornamentation in female choice of a multimodal male courtship display. Ethology 112:1062–1070CrossRefGoogle Scholar
  23. Immel V (1954) Zur Biologie und Physiologie von Nemastoma quadripunctatum (Opiliones, Dyspnoi). Zool Jahr Abt Syst 83:129–184Google Scholar
  24. Iwasaki M, Delago A, Nishino H, Aonuma H (2006) Effects of previous experience on the agonistic behaviour of male crickets, Gryllus bimaculatus. Zool Sci 23:863–872PubMedCrossRefGoogle Scholar
  25. Juberthie C (1957) Présence d’organes de stridulation chez deux Nemastomatidae (Opilions). Bull Mus 29:210–212Google Scholar
  26. Juberthie C (1968) Organes de stridulation chez un opilion cavernicole, Abasola sarea (Travuniidae). Ann Spéléol 23:479–482Google Scholar
  27. Juberthie J, Lopez A, Juberthie-Jupeau L (1981) Étude ultrastructurale des sensilles thoraciques dorsales et paramédianes chez Sabacon paradoxum Simon (Palpatores, Sabaconidae). Atti Dell Soc Tosc Di Sci Nat, Memoire, Serie B 88(Suppl):27–33Google Scholar
  28. Kortet R, Hedrick A (2005) The scent of dominance: female field crickets use odour to predict the outcome of male competition. Behav Ecol Sociobiol 59:77–83CrossRefGoogle Scholar
  29. Li J, Zhang Z, Liu F, Liu Q, Gan W, Chen J, Lim MLM, Li D (2008) UVB-based mate-choice cues used by females of the jumping spider Phintella vittata. Curr Biol 18:699–703PubMedCrossRefGoogle Scholar
  30. Lim MLM, Li J, Li D (2008) Effect of UV-reflecting markings on female mate-choice decisions in Cosmophasis umbratica, a jumping spider from Singapore. Behav Ecol 19:61–66CrossRefGoogle Scholar
  31. Machado G, Macías-Ordóñez R (2007) Reproduction. In: Pinto-da-Rocha R, Machado G, Giribet G (eds) Harvestmen: the biology of opiliones. Harvard University Press, Cambridge, pp 414–454Google Scholar
  32. Macías-Ordóñez R (1997) The mating system of Leiobunum vittatum Say 1821 (Arachnida: Opiliones: Palpatores): resource defense polygyny in the striped harvestman. Ph.D. thesis. Lehigh University, Bethlehem, USAGoogle Scholar
  33. Macías-Ordóñez R, Machado G, Perez-Gonzalez A, Shultz JW (2010) Genitalic evolution in Opiliones. In: Leonard JL, Córdoba-Aguilar A (eds) The evolution of primary sexual characters in animals, vol 1. Oxford University Press, Oxford, pp 285–306Google Scholar
  34. Mathiessen FA (1968) On the sexual behaviour of some Brazilian scorpions. Rev Bras Pesq Med Biol 1:93–96Google Scholar
  35. Maynard Smith J, Harper D (2005) Animal signals. Oxford University Press, OxfordGoogle Scholar
  36. Meyer-Rochow VB, Liddle AL (1988) Structure and function of the eyes of two species of opilionid from New Zealand glow-worm caves (Megalopsalis tumida: Palpatores, and Hendea myersi cavernicola: Laniatores). Proc R Soc Lond B 233:293–319CrossRefGoogle Scholar
  37. Reissland A, Görner P (1985) Trichobothria. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin, pp 138–161CrossRefGoogle Scholar
  38. Roberts JA, Uetz GW (2005) Information content of female chemical signals in the wolf spider, Schizocosa ocreata: male discrimination of reproductive state and receptivity. Anim Behav 70:217–223CrossRefGoogle Scholar
  39. Rypstra AL, Wieg C, Walker SE, Persons MH (2003) Mutual mate assessment in wolf spiders: differences in the cues used by males and females. Ethology 109:315–325CrossRefGoogle Scholar
  40. Santer RD, Hebets EA (2008) Agonistic signals received by an arthropod filiform hair allude to the prevalence of near-field sound communication. Proc R Soc Lond B 275:363–368CrossRefGoogle Scholar
  41. Schulz S (2004) Semiochemistry of spiders. In: Cardé RT, Miller JG (eds) Advances in insect chemical ecology. Cambridge University Press, Cambridge, pp 110–150CrossRefGoogle Scholar
  42. Secondi J, Haerty W, Lode T (2005) Female attraction to conspecific chemical cues in the palmate newt Triturus helveticus. Ethology 111:726–735CrossRefGoogle Scholar
  43. Schultz JW, Pinto-da-Rocha R (2007) Morphology and functional anatomy. In: Pinto-da-Rocha R, Machado G, Giribet G (eds) Harvestmen: the biology of opiliones. Harvard University Press, Cambridge, pp 14–61Google Scholar
  44. Siljander E, Penman D, Harlan H, Gries G (2007) Evidence for male- and juvenile-specific contact pheromones of the common bed bug Cimex lectularius. Ent Exp Appl 125:215–219CrossRefGoogle Scholar
  45. Sonenshine DE (2004) Pheromones and other semiochemicals of ticks and their use in tick control. Parasitology 129:S405–S425PubMedCrossRefGoogle Scholar
  46. Sonenshine DE (2006) Tick pheromones and their use in tick control. Annu Rev Entomol 51:557–80PubMedCrossRefGoogle Scholar
  47. Steinmetz I, Schmolz E, Ruther J (2003) Cuticular lipids as trail pheromone in a social wasp. Proc R Soc B 270:385–391PubMedCrossRefGoogle Scholar
  48. Svetec N, Cobb M, Ferveur J-F (2005) Chemical stimuli induce courtship dominance in Drosophila. Curr Biol 15:R790–R792PubMedCrossRefGoogle Scholar
  49. Switzer PV, Forsythe PS, Escajeda K, Kruse KC (2004) Effects of environmental and social conditions on homosexual pairing in the Japanese Beetle (Popillia japonica Newman). J Insect Behav 17:1–16CrossRefGoogle Scholar
  50. Symonds MRE, Elgar MA (2008) The evolution of pheromone diversity. Trends Ecol Evol 23:220–228PubMedCrossRefGoogle Scholar
  51. Tarsitano M, Jackson RR, Kirchner WH (2000) Signals and signal choices made by the araneophagic jumping spider Portia fimbriata while hunting the orb-weaving web spiders Zygiella x-notata and Zosis geniculatus. Ethology 106:595–615CrossRefGoogle Scholar
  52. Uetz GW, Roberts JA (2002) Multisensory cues and multimodal communication in spiders: insights from video/audio playback studies. Brain Behav Evol 59:222–230PubMedCrossRefGoogle Scholar
  53. Vainikka A, Seppälä O, Löytynoja K, Rantala MJ (2006) Fitness consequences of female preference for male pheromones in Tenebrio molitor. Evol Ecol Res 8:943–957Google Scholar
  54. Weygoldt P (2000) Whip spiders (Chelicerata: Amblypygi). Their biology, morphology and systematics. Apollo Books, SteenstrupGoogle Scholar
  55. Willemart RH, Chelini MC (2007) Experimental demonstration of close-range olfaction and contact chemoreception in the Brazilian harvestman Iporangaia pustulosa. Ent Exp Appl 123:73–79CrossRefGoogle Scholar
  56. Willemart RH, Chelini MC, Andrade R, Gnaspini P (2007) An ethological approach to a SEM survey on sensory structures and tegumental gland openings of two neotropical harvestmen (Arachnida, Opiliones, Gonyleptidae). Ital J Zool 74:39–54CrossRefGoogle Scholar
  57. Willemart RH, Farine J-P, Gnaspini P (2009a) Sensory biology of Phalangida harvestmen (Arachnida, Opiliones): a review, with new morphological data on 18 species. Acta Zool 90:209–227CrossRefGoogle Scholar
  58. Willemart RH, Osses F, Chelini M-C, Macías-Ordóñez R, Machado G (2009b) Sexually dimorphic legs in a neotropical harvestman (Arachnida, Opiliones): ornament or weapon? Behav Proc 80:1–59CrossRefGoogle Scholar
  59. Wyatt TD (2004) Pheromones and animal behaviour, communication by smell and taste. Cambridge University Press, CambridgeGoogle Scholar
  60. Zemek R, Bouman EAP, Dusbábek F (2007) The influence of conspecific chemical cues on walking behavior of Ixodes ricinus males. Exp Appl Acarol 41:255–265PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of NebraskaLincolnUSA
  2. 2.Laboratório de Ecologia Sensorial e Comportamento de Artrópodes (LESCA), Escola de Artes Ciências e HumanidadesUniversidade de São PauloSão PauloBrazil

Personalised recommendations