Advertisement

Journal of Insect Behavior

, Volume 23, Issue 3, pp 189–204 | Cite as

Queue Size Determines the Width of Tunnels in the Formosan Subterranean Termite (Isoptera: Rhinotermitidae)

  • Paul M. Bardunias
  • Nan-Yao Su
Article

Abstract

We present a model of tunnel excavation by termites that requires no pheromone labeling of soil or work sites, but instead relies on tactile interactions and individuals who actively orient their movement. Potential termite excavators moved from the tunnel origin towards the distal end of the tunnel and formed a queue behind those termites at the digging face. Delayed termites excavated soil laterally from the tunnel wall at a position governed by their position in the queue of termites. By examining excavation under artificially induced conditions of longer and shorter queues of termites at the tunnel end, we showed that tunnel width increased with increased queue size and the rate of lateral excavation in a process we termed “digging pressure.”

Keywords

Excavation tunnel queue coptotermes formosanus 

Notes

Acknowledgements

We thank R. Pepin and P. Ban for technical assistance and R. L. Yang for statistic analysis (University of Florida) as well as G. Seedahmed for review of the manuscript (University of Florida). This research was supported by the Florida Agricultural Experiment Station and a grant from USDA-ARS under the grant agreement No. 58-6435-2-0023.

References

  1. Bardunias PM, Su N-Y (2005) Comparison of Tunnel Geometry of Subterranean Termites (Isoptera: Rhinotermitidae) in “Two-dimensional” and “Three-dimensional” Arenas. Sociobiology 45:679–685Google Scholar
  2. Bardunias PM, Su N-Y (2009a) Opposing headings of excavating and depositing termites facilitate branch formation in the Formosan subterranean termite. Animal Behav 78:755–759CrossRefGoogle Scholar
  3. Bardunias PM, Su N-Y (2009b) Dead reckoning in the tunnel propagation of the formosan subterranean termite (Isoptera: Rhinotermitidae). Ann Entomol Soc Am 102:158–165CrossRefGoogle Scholar
  4. Bonabeau E, Theraulaz G, Deneubourg J-L, Franks NR, Rafelsberger O, Joly J-L, Blanco S (1998a) A model for the emergence of pillars, walls and royal chambers in termite nests. Phil Trans R Soc B 353:1561–1576CrossRefGoogle Scholar
  5. Bonabeau E, Theraulaz G, Deneubourg J-L (1998b) Latency time and absence of group effect. Insectes Soc 45:191–195CrossRefGoogle Scholar
  6. Bruinsma OH (1979) An analysis of building behaviour of the termite Macrotermes subhyalinus (Rhambur). Ph. D. Thesis, Landbouwhogeschool, Wageningen, NetherlandsGoogle Scholar
  7. Buhl J, Deneubourg JL, Grimal A, Theraulaz G (2005) Self-organized digging activity in ant colonies. Behav Ecol Scociobiol 58:9–17CrossRefGoogle Scholar
  8. Campora CE, Grace JK (2001) Tunnel orientation and search pattern sequence of theFormosan subterranean termite (Isoptera: Rhinotermitidae). J Econ Ent 94:1193–1199CrossRefGoogle Scholar
  9. Catania KC (1999) A nose that looks like a hand and acts like an eye: the unusual mechanosensory system of the star-nosed mole. J Comp Physiol A 185:376–372CrossRefGoogle Scholar
  10. Courtois PJ, Heymans F (1991) A simulation of the construction process of a termite nest. J Theor Biol 153:469–475CrossRefGoogle Scholar
  11. Deneuborg J-L, Franks NR (1995) Collective control with out explicit coding: the case of communal nest excavation. J Insect Behav 8:417–432CrossRefGoogle Scholar
  12. Deneuborg J-L, Franks NR (1997) Self-organizing nest construction in ants: the behaviour of individual workers and the properties of the nest’s dynamics. Anim Behav 54:779–796CrossRefGoogle Scholar
  13. Grasse P-P (1959) La reconstruction du nid et les coordinations inter-individuelles chez Bellicositermes nataliensis et Cubitermes sp. La theore de la stigmergie: essai d’interpretation du comportment des termites constructeurs. Insectes Soc 6:41–81CrossRefGoogle Scholar
  14. Jones RJ (1979) Expansion of the nest of Nasutitermes coastalis. Insectes Soc 26:322–342CrossRefGoogle Scholar
  15. Kramer RSS (2005) Three-dimensional ant nest excavation using stigmergic rules. The University of Sussex, Brighton, M. S. thesisGoogle Scholar
  16. Ladely D, Bullock S (2005) The role of logistic constraints in termite construction of chambers and tunnels. J Theor Biol 234:551–564CrossRefGoogle Scholar
  17. Lee S-H, Bardunias PM, Su N-Y, Yang R-L (2008) Behavioral response of termites to tunnel surface irregularity. Behav Process 78:397–400CrossRefGoogle Scholar
  18. O’Toole DV, Robinson PA, Myerscough MR (1999) Self organized criticality in termite architecture: a role of crowding in ensuring ordered nest expansion. J Theor Biol 198:305–327CrossRefPubMedGoogle Scholar
  19. O’Toole DV, Robinson PA, Myerscough MR (2003) Self organized criticality and emergent oscillations in models of termite architecture with crowding. J Theor Biol 221:15–27CrossRefPubMedGoogle Scholar
  20. Pitts-Singer TL, Forschler BT (2000) Influence of guidelines and passageways on tunnelling behavior of Reticulitermes flavipes (Kollar) and R. virginicus (Banks) J. Insect Behav 13:273–290CrossRefGoogle Scholar
  21. Reinhard J, Hertel H, Kaib M (1997) Systematic Search for food in the subterraneantermite Reticulitermes santonensis De Feytaud (Isoptera, Rhinotermitidae). Insectes Soc 44:147–158CrossRefGoogle Scholar
  22. SAS Institute (1987) SAS/STAT guide for personal computers, version 6 ed. SAS Institute, CaryGoogle Scholar
  23. Stuart AM (1967) Alarm, defense and construction behaviour relationships in termites (Isoptera). Science 156:1123–1125CrossRefPubMedGoogle Scholar
  24. Su N-Y, Scheffrahn RH (1986) A method to access, trap, and monitor field populations of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in the urban environment. Sociobiology 12:299–304Google Scholar
  25. Su N-Y, Puche H (2003) Tunneling activity of subterranean termites (Isoptera: Rhinotermitidae) in sand with moisture gradients. J Econ Ent 96:88–93CrossRefGoogle Scholar
  26. Su N-Y, Stith BM, Puche H, Bardunias PM (2004) Characterization of tunneling geometry of subterranean termites (Isoptera: Rhinotermitidae) by computer simulation. Sociobiology 44:471–483Google Scholar
  27. Sudd JH (1975) A model of digging behaviour and tunnel production in ants. Insectes Soc 22:225–235CrossRefGoogle Scholar
  28. Tarumingkeng RC, Coppel HC, Matsumura F (1976) Morphology and ultrastructure of the antennal chemoreceptors and mechanoreceptors of worker Coptotermes formosanus Shiraki. Cell Tis Res 173:173–178Google Scholar
  29. Theraulaz G, Bonabeau E (1999) A brief history of stigmergy. Artificial Life 5:97–116CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Entomology and Nematology, Ft. Lauderdale Research and Education CenterUniversity of FloridaFt. LauderdaleUSA

Personalised recommendations