Olfactory versus Contact Cues in Host Plant Recognition of a Monophagous Chrysomelid Beetle

  • Annette Heisswolf
  • Dirk Gabler
  • Elisabeth Obermaier
  • Caroline Müller
Original Article

The importance of olfactory versus contact cues for host plant recognition was investigated in the tortoise beetle Cassida canaliculata Laich. (Coleoptera: Chrysomelidae), which is strictly monophagous on meadow sage. The reaction of adult beetles to olfactory and contact host cues was tested using three bioassays (locomotion compensator, six-chamber-olfactometer, ‘stem arena’) to account for different behavioral contexts. Bioassay-guided fractionation of plant extracts was elaborated to characterize the nature of contact stimuli. The beetles were only slightly attracted to odors from small amounts of leaf material. However, when contact cues were provided additionally, the beetles showed strong preferences for samples of their host plant over controls. Bioassay-guided fractionation led to isolation of at least two non-polar contact stimuli acting in concert that are sufficient for host plant identification in C. canaliculata.


locomotion compensator olfactometer bioassay-guided fractionation stem arena host recognition 



We thank Torsten Meiners and Monika Hilker for giving us the opportunity to use the servosphere at Free University, Berlin, and Oliver Mitesser and Thomas Hovestadt for statistical advice. We are grateful to Hans Joachim Poethke for valuable discussions during the development of the concept as well as to Markus Riederer for hosting the project. Furthermore, we appreciate the helpful comments of two anonymous referees. We thank the government of Lower Franconia (Bavaria, Germany) for the permission to collect beetles in the nature reserve. A. Heisswolf was financially supported through a scholarship granted by the ‘Evangelisches Studienwerk e.V. Villigst’. Financial support for the experiments was granted by the Sonderforschungsbereich SFB 554 ‘Mechanismen und Evolution des Arthropodenverhaltens: Gehirn – Individuum – soziale Gruppe – Superorganismus’ of the Deutsche Forschungsgemeinschaft.


  1. Andersen, J. F., and Metcalf, R. L. (1986). Identification of a volatile attractant for Diabrotica and Acalymma spp. from blossoms of Cucurbita maxima duchesne. J. Chem. Ecol. 12: 687–699.CrossRefGoogle Scholar
  2. Barata, E. N., Pickett, J. A., Wadhams, L. J., Woodcock, C. M., and Mustaparta, H. (2000). Identification of host and nonhost semiochemicals of eucalyptus woodborer Phoracantha semipunctata by gas chromatography-electroantennography. J. Chem. Ecol. 26: 1877–1895.CrossRefGoogle Scholar
  3. Bartlet, E., Blight, M. M., Lane, P., and Williams, I. H. (1997). The responses of the cabbage seed weevil Ceutorhynchus assimilis to volatile compounds from oilseed rape in a linear track olfactometer. Entomol. Exp. Appl. 85: 257–262.CrossRefGoogle Scholar
  4. Bernays, E. A. (2001). Neural limitations in phytophagous insects: Implications for diet breadth and evolution of host affiliation. Ann. Rev. Entomol. 46: 703–727.CrossRefGoogle Scholar
  5. Blackmer, J. L., and Cañas, L. A. (2005). Visual cues enhance the response of Lygnus hesperus (Heteroptera: Miridae) to volatiles from host plants. Environ. Entomol. 34: 1524–1533.Google Scholar
  6. Blight, M. M., Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. (1995). Antennal reception of oilseed rape, Brassica napus (Brassicaceae), volatiles by the cabbage seed weevil Ceutorhynchus assimilis (Coleoptera: Curculionidae). J. Chem. Ecol. 21: 1649–1664.CrossRefGoogle Scholar
  7. Bourgeois, J., and Scherdlin, P. (1899). Catalogue des Coléoptères des Vosges et des regions limitrophes. Colmar.Google Scholar
  8. Bruce, T. J. A., Wadhams, L. J., and Woodcock, C. M. (2005). Insect host location: a volatile situation. Trends Plant Sci. 10: 270–274.CrossRefGoogle Scholar
  9. Bullas-Appleton, E. S., Otis, G., Gillard, C., and Schaafsma, A. W. (2004). Potato leafhopper (Homoptera: Cicadellidae) varietal preferences in edible beans in relation to visual and olfactory cues. Environ. Entomol. 33: 1381–1388.Google Scholar
  10. Campbell, S. A., and Borden, J. H. (2006). Integration of visual and olfactory cues of hosts and non-hosts by three bark beetles (Coleoptera: Scolytidae). Ecol. Entomol. 31: 437–449.CrossRefGoogle Scholar
  11. Chapman, R. F., and Sword, G. (1993). The importance of palpation in food selection by a polyphagous grasshopper (Orthoptera: Acrididae). J. Insect. Behav. 6: 79–91.CrossRefGoogle Scholar
  12. Eigenbrode, S. D., and Espelie, K. E. (1995). Effects of plant epicuticular lipids on insect herbivores. Annu. Rev. Entomol. 40: 171–194.CrossRefGoogle Scholar
  13. Eisner, T., and Grant, R. P. (1981). Toxicity, odor aversion, and ‘odor aposematism’. Science 213: 476.PubMedCrossRefGoogle Scholar
  14. Endler, J. A. (1993). The color of light in forests and its implications. Ecol. Monogr. 63: 1–27.CrossRefGoogle Scholar
  15. Endo, N., Abe, M., Sekine, T., and Matsuda, K. (2004). Feeding stimulants of Solanaceae-feeding lady beetle, Epilachna vigintioctomaculata (Coleoptera: Coccinellidae) from potato leaves. Appl. Entomol. Zool. 39: 411–416.CrossRefGoogle Scholar
  16. Fawcett, T. W., and Johnstone, R. A. (2003). Optimal assessment of multiple cues. Proc. Roy. Soc. Lond. B 270: 1637–1643.CrossRefGoogle Scholar
  17. Feeny, P., Paauwe, K. L., and Demong, N. J. (1970). Flea beetles and mustard oils: Host plant specificity of Phyllotreta cruciferae and P. striolata adults (Coleoptera: Chrysomelidae). Ann. Entomol. Soc. Am. 63: 832–841.Google Scholar
  18. Ferguson, J. E., Metcalf, E. R., Metcalf, R. L., and Rhodes, A. M. (1983). Influence of cucurbitacin content in cotyledons of Cucurbitaceae cultivars upon feeding behavior of Diabroticine beetles (Coleoptera: Chrysomelidae). J. Econ. Ecol. 76: 47–51.Google Scholar
  19. Fischer, S., Samietz, J., Wäckers, F. L., and Dorn, S. (2004). Perception of chromatic cues during host location by the pupal parasitoid Pimpla turionellae (L.) (Hymenoptera: Ichneumonidae). Environ. Entomol. 33: 81–87.Google Scholar
  20. Fraser, A. M., Mechaber, W. L., and Hildebrand, J. G. (2003). Electroantennographic and behavioral responses of the sphinx moth Manduca sexta to host plant headspace volatiles. J. Chem. Ecol. 29: 1813–1833.CrossRefGoogle Scholar
  21. Graser, K. (1984). Thüringer Funde von Cassida (U. G. Lordiconia RTTR) canaliculata LAICH. 1781 (Col., Chrysomelidae). Entomol. Nachricht. Bericht. 28: 86–87.Google Scholar
  22. Harrison, G. D. (1987). Host-plant discrimination and evolution of feeding preference in the Colorado potato beetle Leptinotarsa decemlineata. Physiol. Entomol. 12: 407–415.Google Scholar
  23. Hausmann, C., Samietz, J., and Dorn, S. (2004). Visual orientation of overwintered Anthonomus pomorum (Coleoptera: Curculionidae). Environ. Entomol. 33: 1410–1415.Google Scholar
  24. Hegnauer, R. (1964). Chemotaxonomie der Pflanzen. Birkhäuser Verlag, Basel.Google Scholar
  25. Heisswolf, A., Obermaier, E., and Poethke, H. J. (2005). Selection of large host plants for oviposition by a monophagous leaf beetle: nutritional quality or enemy-free space? Ecol. Entomol. 30: 299–306.CrossRefGoogle Scholar
  26. Heisswolf, A., Poethke, H. J., and Obermaier, E. (2006). Multitrophic effects on oviposition site selection in a specialized leaf beetle at multiple spatial scales. Basic Appl. Ecol. 7: 565–576.CrossRefGoogle Scholar
  27. Heisswolf, A., Ulmann, S., Obermaier, E., Mitesser, O., and Poethke, H. J. (2007). Host plant finding in the specialised leaf beetle Cassida canaliculata – an analysis of small-scale movement behaviour. Ecol. Entomol., in press. doi:10.1111/j.1365–2311.2006.00858.xGoogle Scholar
  28. Held, D. W., Gonsiska, P., and Potter, D. A. (2003). Evaluating companion planting and non-host masking odors for protecting roses from the Japanese beetle (Coleoptera: Scarabaeidae). J. Econ. Entomol. 96: 81–87.CrossRefGoogle Scholar
  29. Hopkins, R. J., Birch, A. N. E., Griffiths, D. W., Baur, R., Städler, E., and McKinlay, R. G. (1997). Leaf surface compounds and oviposition preference of Turnip root fly Delia floralis: the role of glucosinolate and nonglucosinolate compounds. J. Chem. Ecol. 23: 629–643.CrossRefGoogle Scholar
  30. Jermy, T., Szentesi, Á., and Horváth, J. (1988). Host plant finding in phytophagous insects: the case of the Colorado potato beetle. Entomol. Exp. Appl. 49: 83–98.CrossRefGoogle Scholar
  31. Kalberer, N. M., Turlings, T. C. J., and Rahier, M. (2001). Attraction of a leaf beetle (Oreina cacaliae) to damaged host plants. J. Chem. Ecol. 27: 647–661.CrossRefGoogle Scholar
  32. Kalberer, N. M., Turlings, T. C. J., and Rahier, M. (2005). An alternative hibernation strategy involving sunexposed ‘hotspots’, dispersal by flight, and host plant finding by olfaction in an alpine leaf beetle. Entomol. Exp. Appl. 114: 189–196.CrossRefGoogle Scholar
  33. Kippenberg, H. (2003). Rote Liste gefährdeter Blatt- und Samenkäfer (Coleoptera: Chrysomelidae et Bruchidae) Bayerns. In Bayerisches Landesamt für Umweltschutz (ed.), Rote Liste gefährdeter Tiere Bayerns, Schriftenreihe des LfU, Heft 166, p. 154–160.Google Scholar
  34. Kramer, E. (1976). The orientation of walking honeybees in odour fields with small concentration gradients. Physiol. Entomol. 1: 27–37.Google Scholar
  35. Larsen, L. M., Nielsen, J. K., and Sörensen, H. (1992). Host plant recognition in monophagous weevils: specialization of Ceutorhynchus inaffectatus to glucosinolates from its host plant Hesperis matronalis. Entomol. Exp. Appl. 64: 49–55.CrossRefGoogle Scholar
  36. Mäntylä, E., Klemola, T., and Haukioja, E. (2004). Attraction of willow warblers to sawfly-damaged mountain birches: novel function of inducible plant defences? Ecol. Letters 7: 915.CrossRefGoogle Scholar
  37. Metcalf, R. L., Metcalf, R. A., and Rhodes, A. M. (1980). Cucurbitacins as kairomones for diabroticite beetles. Proc. Natl. Acad. Sci. U. S. A. 77: 3769–3772.CrossRefGoogle Scholar
  38. Mitchell, B. K. (1994). The chemosensory basis of host-plant recognition in Chrysomelidae. In Jolivet, P. H., Cox, M. L., and Petitpierre, E. (eds.), Novel Aspects of the Biology of Chrysomelidae, Kluwer Academic Publishers, Dordrecht, pp. 141–151.Google Scholar
  39. Müller, C., and Hilker, M. (2000). The effect of a green leaf volatile on host plant finding by larvae of a herbivorous insect. Naturwissenschaften 87: 216–219.CrossRefGoogle Scholar
  40. Müller, C., and Hilker, M. (2001). Host finding and oviposition behavior in a chrysomelid specialist - the importance of host plant surface waxes. J. Chem. Ecol. 27: 985–994.CrossRefGoogle Scholar
  41. Müller, C., and Renwick, J. A. A. (2001). Different phagostimulants in potato foliage for Manduca sexta and Leptinotarsa decemlineata. Chemoecol. 11: 37–41.CrossRefGoogle Scholar
  42. Müller, C., and Riederer, M. (2005). Review: Plant surface properties in chemical ecology. J. Chem. Ecol. 31: 2621–2651.CrossRefGoogle Scholar
  43. Pereyra, P. C., and Bowers, M. D. (1988). Iridoid glycosides as oviposition stimulants for the buckeye butterfly, Junonia coenia. J. Chem. Ecol. 14: 917–928.CrossRefGoogle Scholar
  44. Prokopy, R. J., and Owens, E. D. (1983). Visual detection of plants by herbivorous insects. Annu. Rev. Entomol. 28: 337–364.CrossRefGoogle Scholar
  45. R Development Core Team (2005). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: Scholar
  46. Rausher, M. D. (1981). The effect of native vegetation on the susceptibility of Aristolochia reticulate (Aristolochiaceae) to herbivore attacks. Ecology 62: 1187–1195.CrossRefGoogle Scholar
  47. Rees, C. J. C. (1969). Chemoreceptor specificity associated with choice of feeding site by the beetle Chrysolina brunsvicensis on its foodplant, Hypericum hirsutum. Entomol. Exp. Appl. 12: 565–583.CrossRefGoogle Scholar
  48. Reitter, E. (1912). Fauna Germanica, Käfer. Stuttgart.Google Scholar
  49. Sabelis, M. W., and Schippers, P. (1984). Variable wind directions and anemotactic strategies of searching for an odor plume. Oecologia 63: 225–228.CrossRefGoogle Scholar
  50. Schoonhoven, L. M., Jermy, T., and van Loon, J. J. A. (1998). Host-plant selection: how to find a host plant. In Schoonhoven, L. M., Jermy, T., and van Loon, J. J. A. (eds.), Insect-Plant Biology: from Physiology to Evolution, Chapman and Hall, London, pp. 121–153.Google Scholar
  51. Städler, E., and Buser, H.-R. (1984). Defense chemicals in leaf surface wax synergistically stimulate oviposition by a phytophagous insect. Experientia 40: 1157–1159.CrossRefGoogle Scholar
  52. Steidle, J. L. M., and Schöller, M. (1997). Olfactory host location and learning in the granary weevil parasitoid Lariophagus distinguendus (Hymenoptera: Pteromalidae). J. Insect Behav. 10: 331–342.Google Scholar
  53. Steinhausen, W. (1949). Morphologie, Biologie und Ökologie der Entwicklungsstadien der in Niedersachsen heimischen Schildkäfer und deren Bedeutung für die Landwirtschaft. Dissertation, TU Braunschweig.Google Scholar
  54. Tallamy, D. W., and Krischik, V. A. (1989). Variation and function of cucurbitacins in Cucurbita: An examination of current hypothesis. Am. Nat. 133: 766–786.CrossRefGoogle Scholar
  55. Tamura, Y., Hattori, M., Konno, K., Kono, Y., Honda, H., Ono, H., and Yoshida, M. (2004). Triterpenoid and caffeic acid derivatives in the leaves of ragweed, Ambrosia artemisiifolia L. (Asterales: Asteraceae), as feeding stimulants of Ophraella communa LeSage (Coleoptera: Chrysomelidae). Chemoecol. 14: 113–118.CrossRefGoogle Scholar
  56. Taneja, J., and Guerin, P. M. (1995). Oriented responses of the triatomine bugs Rhodnius prolixus and Triatoma infestans to vertebrate odours on a servosphere. J. Comp. Physiol. A 176: 455–464.CrossRefGoogle Scholar
  57. Tanton, M. T. (1977). Response to food plant stimuli by larvae of the mustard beetle Phaedon cochleriae. Entomol. Exp. Appl. 22: 113–122.CrossRefGoogle Scholar
  58. Trautner, J., Geigenmüller, K. and Bense, U. (1989). Käfer beobachten, bestimmen. Neumann-Neudamm, Melsungen.Google Scholar
  59. van Loon, J. J. A., Wang, C. Z., Nielsen, J. K., Gols, R., and Qui, Y. T. (2002). Flavonoids from cabbage are feeding stimulants for diamondback moth larvae additional to glucosinolates: Chemoreception and behaviour. Entomol. Exp. Appl. 104: 27–34.CrossRefGoogle Scholar
  60. van Tilborg, M., Sabelis, M. W., and Roessingh, P. (2004). State-dependent and odour-mediated anemotactic responses of the predatory mite Phytoseiulus persimilis in a wind tunnel. Exp. App. Acarol. 32: 263–270.CrossRefGoogle Scholar
  61. van Tol, R. W. H. M., and Visser, J. H. (2002). Olfactory antennal responses of the vine weevil Otiorhynchus sulcatus to plant volatiles. Entomol. Exp. Appl. 102: 49–64.CrossRefGoogle Scholar
  62. Veličković, D. T., Randjelović, N. V., Ristić, M. S., Šmelcerović, A. A., and Veličković, A. S. (2002). Chemical composition and antimicrobial action of the ethanol extracts of Salvia pratensis L., Salvia glutinosa L. and Salvia aethiopis L. Serb. Chem. Soc. 67: 639–646.CrossRefGoogle Scholar
  63. Visser, J. H. (1986). Host odor perception in phytophagous insects. Annu. Rev. Entomol. 31: 121–144.CrossRefGoogle Scholar
  64. Visser, J. H., and Avé, D. A. (1978). General green leaf volatiles in the olfactory orientation of the Colorado potato beetle, Leptinotarsa decemlineata. Entomol. Exp. Appl. 24: 738–749.CrossRefGoogle Scholar
  65. Wencker, J., and Silbermann, G. (1866). Catalogue des Coléoptères de lAlsace et des Vosgues. Strasbourg.Google Scholar
  66. Wright, G. A., and Smith, B. H. (2004). Variation in complex olfactory stimuli and its influence on odour recognition. Proc. Roy. Soc. Lond. B 271: 147–152.CrossRefGoogle Scholar
  67. Zhang, Q.-H., and Schlyter, F. (2004). Olfactory recognition and behavioural avoidance of angiosperm nonhost volatiles by conifer-inhabiting bark beetles. Agricult. Forest Entomol. 6: 1–19.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Annette Heisswolf
    • 1
  • Dirk Gabler
    • 1
    • 2
  • Elisabeth Obermaier
    • 1
    • 3
  • Caroline Müller
    • 2
    • 4
  1. 1.University of Würzburg, Field Station FabrikschleichachRauhenebrachGermany
  2. 2.University of Würzburg, Julius-von-Sachs-Institute for BiosciencesWürzburgGermany
  3. 3.Department of Animal Ecology and Tropical Biology, Am HublandUniversity of Würzburg, BiocenterWürzburgGermany
  4. 4.Department of Chemical Ecology-W1University of BielefeldBielefeldGermany

Personalised recommendations