Journal of Insect Behavior

, Volume 20, Issue 1, pp 33–52 | Cite as

Temperature Effects on the Temporal Properties of Calling Songs in the Crickets Gryllus fultoni and G. vernalis: Implications for Reproductive Isolation in Sympatric Populations

  • Yikweon JangEmail author
  • H. Carl Gerhardt

Two closely related wood-cricket species, Gryllus fultoni (Orthoptera: Gryllidae) and G. vernalis, produce similar calling songs, consisting of 3-pulse chirps. Analysis of field and laboratory recordings of calling songs showed that, after correction to a common temperature, there was a divergence in chirp and pulse rates between far allopatric populations of G. fultoni and populations sympatric with G. vernalis. To determine whether the divergence in calling songs potentially provides reproductive isolation between G. fultoni and G. vernalis throughout the temperature range over which these insects sing, we recorded calling songs of lab-reared G. fultoni and G. vernalis populations between 18 and 28°C. Mean chirp rate significantly differed between sympatric and far allopatric G. fultoni populations as well as between sympatric G. fultoni and G. vernalis populations. Although there was a significant difference in mean pulse rate between sympatric G. fultoni and G. vernalis populations, pulse rate did not differ between sympatric and far allopatric G. fultoni populations in the laboratory study. Considering the magnitudes of differences in calling song characters discriminated by females of G. fultoni and the mean differences and the variability in calling song characters between the two species, the joint difference in chirp and pulse rates may be adequate for species discrimination over most of the range at which these crickets breed.


calling song Gryllus fultoni Gryllus vernalis reproductive character displacement reproductive isolation 



We appreciate the constructive comments of T. W. Kim, M. J. Littlejohn, and V. Marshall on this paper. We also thank A. Bockhorst for laboratory assistance. This work was supported financially by the University of Missouri Life Sciences Mission Enhancement Postdoctoral Fellowship to YJ and by a U.S. National Science Foundation grant (IBN0091993) and a U.S. National Institute of Health grant (NIH R01 DC05760) to HCG. The experiments in this study comply with the current law of the United States.


  1. Alatalo, R. V., Gustafsson, L., and Lundberg, A. (1994). Male coloration and species recognition in sympatric flycatchers. Proc. R. Soc. Lond. B. 256: 113–118.CrossRefGoogle Scholar
  2. Alexander, R. D. (1957). The taxonomy of the field crickets of the eastern United States (Orthoptera: Gryllidae: Acheta). Ann. Entomol. Soc. Am. 50: 584–602.Google Scholar
  3. Alexander, R. D. (1968). Life cycle origins, speciation, and related phenomena in crickets. Q. Rev. Biol. 43: 1–41.PubMedCrossRefGoogle Scholar
  4. Benedix, J. H. Jr, and Howard, D. J. (1991). Calling song displacement in a zone of overlap and hybridization. Evolution 45: 1751–1759.CrossRefGoogle Scholar
  5. Bennet-Clark, H. C. (1989). Songs and the physics of sound production. In Huber, F., Moore, T. E., and Loher, W. (eds.), Cricket Behavior and Neurobiology, Cornell Univ. Press, Ithaca, New York, pp. 227–261.Google Scholar
  6. Blair, W. F. (1955). Mating call and stage of speciation in the Microhyla oliveacea-M. carolinensis complex. Evolution 9: 469–480.CrossRefGoogle Scholar
  7. Brown, W. L., and Wilson, E. O. (1956). Character displacement. Syst. Zool. 5: 49–64.CrossRefGoogle Scholar
  8. Carlson, A. D., Copeland, J., Raderman, R., and Bulloch, A. G. M. (1976). Role of interflash intervals in a firefly courtship (Photinus macdermotti). Anim. Behav. 24: 786–792.CrossRefGoogle Scholar
  9. Coyne, J. A., and Orr, H. A. (1989). Patterns of speciation in Drosophila. Evolution 43: 362–381.CrossRefGoogle Scholar
  10. Coyne, J. A., and Orr, H. A. (1997). ``Patterns of speciation in Drosophila" Revisited. Evolution 51: 295–303.CrossRefGoogle Scholar
  11. Dobzhansky, T. (1940). Speciation as a stage in evolutionary divergence. Am. Nat. 74: 312–321.CrossRefGoogle Scholar
  12. Doherty, J. A. (1985). Temperature coupling and ``trade-off" phenomena in the acoustic communication system of the cricket, Gryllus bimaculatus De Geer (Gryllidae). J. Exp. Biol. 114: 17–35.Google Scholar
  13. Gerhardt, H. C. (1978). Temperature coupling in the vocal communication system of the gray tree frog. Hyla versicolor. Science 199: 992–994.CrossRefPubMedGoogle Scholar
  14. Gerhardt, H. C., and Huber, F. (2002). Acoustic Communication in Insects and Anurans. Univ. of Chicago Press, Chicago.Google Scholar
  15. Grant, P. R. (1972). Convergent and divergent character displacement. Biol. J. Linn. Soc. 4: 39–68.Google Scholar
  16. Hedrick, A. V., Perez, D., Lichti, N., and Yew, J. (2002). Temperature preferences of male field crickets (Gryllus integer) alter their mating calls. J. Comp. Physiol. A. 188: 799–805.CrossRefGoogle Scholar
  17. Höbel, G., and Gerhardt, H. C. (2003). Reproductive character displacement in the acoustic communication system of green tree frogs (Hyla cinerea). Evolution 57: 894–904.PubMedCrossRefGoogle Scholar
  18. Howard, D. S. (1993). Reinforcement: Origin, dynamics, and fate of an evolutionary hypothesis. In Harrison, R. F. (ed.), Hybrid Zones and the Evolutionary Process, Oxford Univ. Press. Oxford, pp. 46–69.Google Scholar
  19. Jang, Y., and Gerhardt, H. C. (2006a). Divergence in the calling songs between sympatric and allopatric populations of a wood cricket Gryllus fultoni (Orthoptera: Gryllidae). J. Evol. Biol. 19: 459–472.PubMedCrossRefGoogle Scholar
  20. Jang, Y., and Gerhardt, H. C. (2006b). Divergence in female calling song discrimination between sympatric and allopatric populations of the southern wood cricket Gryllus fultoni (Orthoptera: Gryllidae). Behav. Ecol. Sciobiol. 60: 150–158.CrossRefGoogle Scholar
  21. Jang, Y., Bockhorst, A., and Gerhardt, H. C. (2007). Reproductive isolation in the wood cricket Gryllus vernalis (Orthoptera: Gryllidae). Ethology in press.Google Scholar
  22. Josephson, R. K. (1984). Contraction dynamics of flight and stridulatory muscles of tettigoniid insect. J. Exp. Biol. 108: 77–96.Google Scholar
  23. Loftus-Hills, J. J., and Littlejohn, M. J. (1992). Reinforcement and reproductive character displacement in Gastrophryne carolinensis and Gastrophryne olivacea (Anura: Microhylidae): A reexamination. Evolution 46: 896–906.CrossRefGoogle Scholar
  24. Marshall, D. C., and Cooley, J. R. (2000). Reproductive character displacement and speciation in periodical cicadas, with description of a new species, 13-year Magicicada neotredecim. Evolution 54: 1313–1325.PubMedCrossRefGoogle Scholar
  25. Martin, S. D., Gray, D. A., and Cade, W. H. (2000). Fine-scale temperature effects on cricket calling song. Can. J. Zool. 78: 706–712.CrossRefGoogle Scholar
  26. Noor, M. A. F. (1999). Reinforcement and other consequences of sympatry. Heredity 83: 503–508.PubMedCrossRefGoogle Scholar
  27. Olvido, A. E., and Mousseau, T. A. (1995). Effect of rearing environment on calling-song plasticity in striped ground cricket. Evolution 49: 1271–1277.CrossRefGoogle Scholar
  28. Pires, A., and Hoy, R. R. (1992a). Temperature coupling in cricket acoustic communication. I. Field and laboratory studies of temperature effects on calling song production and recognition in Gryllus firmus. J. Comp. Physiol. A. 171: 69–78.PubMedGoogle Scholar
  29. Pires, A., and Hoy, R. R. (1992b). Temperature coupling in cricket acoustic communication. II. Localization of temperature effects on song production and recognition networks in Gryllus firmus. J. Comp. Physiol. A. 171: 79–92.PubMedCrossRefGoogle Scholar
  30. Ritchie, M. G., Saarikettu, M., Livingstone, S., and Hoikkala, A. (2001). Characterization of female preference functions for Drosophila montana courtship song and a test of the temperature coupling hypothesis. Evolution 55: 721–727.PubMedCrossRefGoogle Scholar
  31. Sanborn, A. F. (2001). Timbal muscle physiology in the endothermic cicada Tibicen winnemanna (Homoptera: Cicadidae). Comp. Biochem. Physiol. A. 130: 9–19.CrossRefGoogle Scholar
  32. Sawamura, K. (2002). Biology of reproductive isolation in Drosophila: Toward a better understanding of speciation. Popul. Ecol. 44: 209–219.CrossRefGoogle Scholar
  33. Schneider, H. (1977). Acoustic behavior and physiology of vocalization in the European tree frog, Hyla arborea (L.). In Taylor, D. H., and Guttman, S. I. (eds.), The reproductive biology of amphibians, Plenum Press, New York, pp. 295–336.Google Scholar
  34. Servedio, M. R., and Noor, M. A. F. (2003). The role of reinforcement in speciation: Theory and data. Annu. Rev. Ecol. Syst. 34: 339–364.CrossRefGoogle Scholar
  35. Shimizu, I., and Barth, F. G. (1996). The effect of temperature on the temporal structure of the vibratory courtship signals of a spider (Cupiennius salei Keys.). J. Comp. Physiol. A 179: 363–370.CrossRefGoogle Scholar
  36. SPSS (2001). SPSS ® 11.0 Syntax Reference Guide. SPSS Inc, Chicago.Google Scholar
  37. Toms, R. B., Ferguson, J. W. H., and Becker, S. (1993). Relationship between body temperature and air temperature in stridulating male crickets, Gryllus bimaculatus (Orthoptera: Gryllidae). S. Afr. J. Zool. 28: 71–73.Google Scholar
  38. Tynkkynen, K., Rantala, M. J., and Suhonen, J. (2004). Interspecific aggression and character displacement in the damselfly Calopteryx splendens. J. Evol. Biol. 17: 759–767.PubMedCrossRefGoogle Scholar
  39. Veech, J. A., Benedix, J. H. Jr., and Howard, D. J. (1996). Lack of calling song displacement between two closely related ground crickets. Evolution 50: 1982–1989.CrossRefGoogle Scholar
  40. Walker, T. J. (1957). Specificity in the response of female tree crickets (Orthoptera, Gryllidae, Oecanthidae) to calling songs of the males. Ann. Entomol. Soc. Am. 50: 626–636.Google Scholar
  41. Walker, T. J. (1962). Factors responsible for intraspecific variation in the calling songs of crickets. Evolution 16: 407–428.CrossRefGoogle Scholar
  42. Walker, T. J. (2000). Pulse rates in the songs of trilling field crickets (Orthoptera: Gryllidae: Gryllus). Ann. Entomol. Soc. Am. 93: 565–572.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Division of Biological Sciences, University of MissouriColumbiaUSA
  2. 2.Department of Life Science, Ewha Womans UniversitySeoulRepublic of Korea

Personalised recommendations