Journal of Insect Behavior

, Volume 19, Issue 5, pp 669–684 | Cite as

Ultraviolet Ornamentation and Male Mating Success in a High-Density Assemblage of the Butterfly Colias eurytheme

  • Darrell. J. KempEmail author

Ultraviolet (UV) colour patterns, particularly those deriving from surface structures, serve a role in sexual signalling and mate choice in a range of animal groups. In the butterfly Colias eurytheme (Pieridae), male-limited iridescent UV functions in species recognition, and has potential as an intraspecific sexual signal of mate quality. I compared the dorsal colouration and body size of males discovered ‘in-copula’ (N = 95) with a random sample of free-flying individuals (N = 129), both collected from a high density agricultural population located in Chandler, U.S.A. Despite reasonable variance in each trait, I found no among-group differences in UV characters (brightness, hue and angular visibility) or in the coincident pigmentary yellowish-orange (brightness and saturation). Statistical power was sufficient to detect all but the smallest among-group differences, and there was a marginally significant tendency for in-copula males to be larger. These data do not support the hypothesis for intraspecific female choice upon male dorsal colouration. However, I discuss how the density and apparently very young age of individuals in the sampling population may have pre-disposed this result, and thus, how sexual selection on male colouration may operate in a density dependent manner.


Lepidoptera Female Mate Choice Sexual Selection Visual Signalling 



I thank J. M. Macedonia for assistance with fieldwork. This work was supported by the National Science Foundation Grant No. 0316120 to R. L. Rutowski, whose support is appreciated.


  1. Bennett, A. T. D., Cuthill, I. C., Partridge, J. C., and Maier, E. J. (1996). Ultraviolet vision and mate choice in zebra finches. Nature 380: 433–435.CrossRefGoogle Scholar
  2. Boggs, C. L., and Gilbert, L. E. (1979). Male contribution to egg production in butterflies—evidence for transfer of nutrients at mating. Science 206: 83–84.CrossRefGoogle Scholar
  3. Boggs, C. L., and Watt, W. B. (1981) Population structure of pierid butterflies IV. Genetic and physiological investment in offspring by male Colias. Oecologia 50: 320–324.CrossRefGoogle Scholar
  4. Bollache, L., and Cezilly, F. (2004) Sexual selection on male body size and assortative pairing in Gammarus pulex (Crustacea: Amphipoda): Field surveys and laboratory experiments. J. Zool. 264: 135–141.CrossRefGoogle Scholar
  5. Bridge, E. S., and Eaton, M. D. (2005). Does ultraviolet reflectance accentuate a sexually selected signal in terns? J. Avian Biol. 36: 18–21.CrossRefGoogle Scholar
  6. Brunton, C. F. A. (1998). The evolution of ultraviolet patterns in European Colias butterflies (Lepidoptera: Pieridae): A phylogeny using mitochondrial DNA. Heredity 80: 611–616.CrossRefGoogle Scholar
  7. Brunton, C. F. A., and Majerus, M. E. N. (1995). Ultraviolet colours in butterflies: Intra- or inter-specific communication? Proc. R. Soc. Lond. B 260: 199–204.Google Scholar
  8. Burnham, K. P., and Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, New York.Google Scholar
  9. Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. 2nd edn. Lawrence Earlbaum and Associates, Hillsdale, New Jersey.Google Scholar
  10. Fitzpatrick, S. (1998). Colour schemes for birds: Structural coloration and signals of quality in feathers. Ann. Zool. Fenn. 35: 67–77.Google Scholar
  11. Fitzstephens, D. M., and Getty, T. (2000). Colour, fat and social status in male damselflies, Calopteryx maculata. Anim. Behav. 60: 851–855.PubMedCrossRefGoogle Scholar
  12. Ghiradella, H. (1974). Development of ultraviolet-reflecting butterfly scales: How to make an interference filter. J. Morph. 142: 395–410.CrossRefGoogle Scholar
  13. Ghiradella, H., Aneshansley, D., Eisner, T., Silberglied, R. E., and Hinton, H. E. (1972). Ultraviolet reflection of a male butterfly: Interference color caused by thin-layer elaboration of wing scales. Science 178: 1214–1217.CrossRefGoogle Scholar
  14. Halliday, D., Resnick, R., and Walker, J. (1997). Fundamentals of Physics. 5th edn. John Wiley and Sons, New York.Google Scholar
  15. Harari, A. R., Handler, A. M., and Landolt, P. J. (1999). Size-assortative mating, male choice and female choice in the curculionid beetle Diaprepes abbreviatus. Anim. Behav. 58: 1191–1200.PubMedCrossRefGoogle Scholar
  16. Hausmann, F., Arnold, K. E., Mashall, N. J., and Owens, I. P. F. (2003). Ultraviolet signals in birds are special. Proc. R. Soc. Lond. B 270: 61–67.CrossRefGoogle Scholar
  17. Hoenig, J. M., and Heisey, D. M. (2001). The abuse of power: The pervasive fallacy of power calculations for data analysis. Am. Stat. 55: 19–24.CrossRefGoogle Scholar
  18. Honek, A. (1993). Intraspecific variation in body size and fecundity in insects—a general relationship. Oikos 66: 483–492.CrossRefGoogle Scholar
  19. Hunt, S., Cuthill, I. C., Bennett, A. T. D., Church, S. C., and Partridge, J. C. (2001). Is the ultraviolet waveband a special communication channel in avian mate choice? J. Exp. Biol. 204: 2499–2507.PubMedGoogle Scholar
  20. Iwasa, Y., and Pomiankowski, A. (1995). Continual change in mate preferences. Nature 377: 420–422.PubMedCrossRefGoogle Scholar
  21. Johnsen, A., Andersson, S., Örnborg, J., and Lifjeld, J. T. (1998). Ultraviolet plumage ornamentation affects social mate choice and sperm competition in bluethroats (Aves: Luscinia s. svecica): A field experiment. Proc. R. Soc. Lond. B 265: 1313–1318.CrossRefGoogle Scholar
  22. Kemp, D. J. (2006). Heightened phenotypic variation and age-based fading of a nano-structural ultraviolet wing ornament. Evol. Ecol. Res. 8: 515–527.Google Scholar
  23. Kemp, D. J., and Rutowski, R. L. (2007). Condition-dependence, quantitative genetics and the potential signal content of iridescent ultraviolet butterfly colotation. Evolution Google Scholar
  24. Kemp, D. J., Rutowski, R. L., and Mendoza, M. (2005). Colour pattern evolution in butterflies: A phylogenetic analysis of structural ultraviolet and melanic markings in North American sulphurs. Evol. Ecol. Res. 7: 133–141.Google Scholar
  25. Knüttel, H., and Fiedler, K. (2001). Host-plant-derived variation in ultraviolet wing patterns influences mate selection by male butterflies. J. Exp. Biol. 204: 2447–2459.PubMedGoogle Scholar
  26. Lenth, R. V. (2001). Some practical guidelines for effective sample size determination. Am. Stat. 55: 187–193.CrossRefGoogle Scholar
  27. Osorio, D., and Ham, A. D. (2002). Spectral reflectance and directional properties of structural coloration in bird plumage. J. Exp. Biol. 205: 2017–2027.PubMedGoogle Scholar
  28. Papke, R. S., Kemp, D. J., and Rutowski, R. L. (In press). Multimodal signaling: Structural ultraviolet reflectance predicts male mating success better than pheromones in the butterfly Colias eurytheme L. (Pieridae). Anim. Behav. Google Scholar
  29. Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution 43: 223–225.CrossRefGoogle Scholar
  30. Robertson, K. A., and Monteiro, A. (2005). Female Bicyclus anynana butterflies choose males on the basis of their dorsal UV-reflective eyespot pupils. Proc. R. Soc. Lond. B 272: 1541–1546.CrossRefGoogle Scholar
  31. Rutowski, R. L. (1977). The use of visual cues in sexual and species discrimination by males of the small sulphur butterfly, Eurema lisa (Lepidoptera, Pieridae). J. Comp. Physiol. 115: 75–85.CrossRefGoogle Scholar
  32. Rutowski, R. L. (1985). Evidence for mate choice in a sulphur butterfly (Colias eurytheme). Zeit. für Tierpsychol. 70: 103–114.Google Scholar
  33. Rutowski, R. L. (1992). Male mate-locating behavior in the common eggfly, Hypolimnas bolina (Nymphalidae). J. Lepid. Soc. 46: 24–38.Google Scholar
  34. Rutowski, R. L., and Gilchrist, G. W. (1986) Copulation in Colias eurytheme (Lepidoptera: Pieridae): Patterns and frequency. J. Zool. 209: 115–124.Google Scholar
  35. Siebeck, U. E. (2004). Communication in coral reef fish: The role of ultraviolet colour patterns in damselfish territorial behaviour. Anim. Behav. 68: 273–282.CrossRefGoogle Scholar
  36. Silberglied, R. E., and Taylor, O. R. (1973). Ultraviolet differences between sulfur butterflies, Colias eurytheme and C. philodice, and a possible isolating mechanism. Nature 241: 406–408.CrossRefGoogle Scholar
  37. Silberglied, R. E., and Taylor, O. R. (1978). Ultraviolet reflection and its behavioral role in the courtship of the sulphur butterflies Colias eurytheme and C. philodice (Lepidoptera, Pieridae). Behav. Ecol. Sociobiol. 3: 203–243.CrossRefGoogle Scholar
  38. Stjernholm, F., Karlsson, B., and Boggs, C. L. (2005). Age-related changes in thoracic mass: Possible reallocation of resources to reproduction in butterflies. Biol. J. Linn. Soc. 86: 363–380.CrossRefGoogle Scholar
  39. Thomas, L., and Juanes, F. (1996). The importance of statistical power analysis: An example from Animal Behaviour. Anim. Behav. 52: 856–859.CrossRefGoogle Scholar
  40. Vollmer, J. H., Sarup, P., Kaersgaard, C. W., Dahlgaard, J., and Loeschcke, V. (2004). Heat and cold-induced male sterility in Drosophila buzzatii: Genetic variation among populations for the duration of sterility. Heredity 92: 257–262.PubMedCrossRefGoogle Scholar
  41. Vukusic, P., Sambles, J. R., Lawrence, C. R., and Wootton, R. J. (1999). Quantified interference and diffraction in single Morpho butterfly scales. Proc. R. Soc. Lond. B 266: 1403–1411.CrossRefGoogle Scholar
  42. Vukusic, P., Sambles, J. R., Lawrence, C. R., and Wootton, R. J. (2001). Structural colour: Now you see it—now you don’t. Nature 410: 36.PubMedCrossRefGoogle Scholar
  43. Watt, W. B. (1964). Pteridine components of wing pigmentation in the butterfly Colias eurytheme. Nature 201: 1326–1327.PubMedCrossRefGoogle Scholar
  44. White, E. M., Partridge, J. C., and Church, S. C. (2003). Ultraviolet dermal reflexion and mate choice in the guppy, Poecilia reticulata. Anim. Behav. 65: 693–700.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.School of Life SciencesArizona State UniversityTempeUSA
  2. 2.School of Tropical BiologyJames Cook UniversityCairnsAustralia

Personalised recommendations