Journal of Insect Behavior

, Volume 19, Issue 5, pp 631–643

No Experimental Evidence for Host Ant Related Oviposition in a Parasitic Butterfly

Article

 

The ability of adult butterflies of the genus Maculinea to locate their host ants prior to oviposition has been the subject of much discussion. We studied the egg laying behavior of the dusky large blue Maculinea nausithous whose larvae parasitize colonies of the ant Myrmica rubra. Flowerheads of the initial food plant were sprinkled with soil from ant nests, which contain chemicals involved in the nest recognition behavior of ants. The experiment was conducted to determine whether ant-released chemicals may act as oviposition cues and whether intraspecific competition for suitable plants may force female butterflies to alternative decisions. Host plant choice was not influenced by the presence of nest-derived host-ant cues. Density dependent shifts to less suitable host plants could not be ascertained nor changes in egg laying behavior across the flight period. The observed egg distribution could be primarily explained by host plant characteristics and environmental variability among sites. The result confirms the theory that host ant dependent oviposition appears to be a disadvantageous strategy in the face of resource limitation within ant colonies and the immobility of caterpillars.

KEY WORDS

oviposition myrmecophily social parasite Maculinea nausithous 

References

  1. Akino, T., Knapp, J. J., Thomas, J. A., and Elmes, G. W. (1999). Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc. R. Soc. Lond. B 266: 1419--1426.CrossRefGoogle Scholar
  2. Als, T. D., Nash, D. R., and Boomsma, J. J. (2002). Geographical variation in host-ant specificity of the parasitic butterfly Maculinea alcon in Denmark. Ecol. Entomol. 27: 403--414.CrossRefGoogle Scholar
  3. Atsatt, P. R. (1981). Ant-dependent foodplant selection by the mistletoe butterfly Ogyris amaryllis (Lycaenidae). Oecologia 48: 60--63.CrossRefGoogle Scholar
  4. Baylis, M., and Pierce, N. E. (1991). The effect of host-plant quality on the survival of larvae and oviposition by adults of an ant-tended lycaenid butterfly, Jalmenus-evagoras. Ecol. Entomol. 16: 1--9.Google Scholar
  5. Beale, J.P. (1998). Temporal and spatial distribution of the rare, myrmecophagous illidge`s ant-blue butterfly, Acrodipsas illidgei (Lycaenidae). J. Lepid. Soc. 52: 139--150.Google Scholar
  6. Billen, J., and Morgan, E. D. (1998). Pheromone communication in social insects: sources and secretions. In Vander Meer, R. K., Breed, M. D., Espelie, K. E., and Winston, M. L. (eds.), Pheromone communication in social insects, Westview Press, Oxford, pp. 3–33.Google Scholar
  7. Bourn, N. A. D., and Thomas J. A. (1993). The ecology and conservation of the brown argus butterfly Aricia agestis in Britain. Biol. Conservation 63: 67--74.CrossRefGoogle Scholar
  8. Cammaerts, M. C., and Cammaerts, R. (1999). Marking of nest entrances and their vicinities in the ant Myrmica rubra. Biol (Bratislava) 54: 553--566.Google Scholar
  9. Cammaerts, M. C., and Cammaerts R. (2000). Nest odour in the ant Myrmica rubra. Biol. (Bratislava) 55: 509--523.Google Scholar
  10. Crawley, M. J. (2002). Statistical computing. John Wiley and Sons Ltd., Chichester.Google Scholar
  11. Cripps, C., and Jackson, T. H. E. (1940). The life history of Lachnocnema bibulus (Fab.) in Kenya (Lepidopt., Lycaenidae). Trans R. Ent. Soc. Lond. 90: 449–453.Google Scholar
  12. Do Nascimento, R. R., and Morgan, E. D. (1996). Chemicals involved in the communication system of social insects: their source and methods of isolation and identification, with special emphasis on ants. Quimica Nova 19: 156–165.Google Scholar
  13. Eastwood, R., and Fraser, A. M. (1999). Associations between lycaenid butterflies and ants in Australia. Aust. J. Ecol. 24: 503–537.CrossRefGoogle Scholar
  14. Ellis, S. (2003). Habitat quality and management for the northern brown argus butterfly Aricia artaxerxes (Lepidoptera Lycaenidae) in North East England. Biol. Conservation 113: 285--294.CrossRefGoogle Scholar
  15. Elmes, G. W., Thomas, J. A., Hammarstedt, O., Munguira, M. L., Martin, J., and Van Der Made, J. G. (1994). Differences in host-ant specificity between Spanish, Dutch and Swedish populations of the endangered butterfly, Maculinea alcon (DENIS et SCHIFF.) (Lepidoptera). Mem. Zool. 48: 55--68.Google Scholar
  16. Fiedler, K., and Maschwitz, U. (1989). Adult myrmecophily in butterflies: the role of the ant Anoplolepis longipes in the feeding and oviposition behaviour of Allotinus unicolor (Lepidoptera, Lycaenidae). Tyo to Ga 40: 241--251.Google Scholar
  17. Fiedler, K. (1991). Systematic, evolutionary and ecological implications of myrmecophily within the Lycaenidae (Insecta: Lepidoptera: Papilionoidea). Bonner Zool. Monogr. 31: 1--210.Google Scholar
  18. Fiedler, K. (1993). The remarkable biology of two Malaysian lycaenid butterflies. Nature Malaysiana 18: 35--43.Google Scholar
  19. Fiedler, K., and Hummel, V. (1996). Myrmecophily in the brown argus butterfly, Aricia agestis (Lepidoptera: Lycaenidae): effects of larval age, ant number and persistence of contacts with ants. Zoology 99: 128--137.Google Scholar
  20. Fiedler, K. (1998). Lycaenid--ant interactions of the Maculinea type: tracing their historical roots in a comparative framework. J. Insect Conserv. 2: 3--14.CrossRefGoogle Scholar
  21. Figurny, E., and Woyciechowski, M. (1998). Flowerhead selection for oviposition by females of the sympatric butterfly species Maculinea teleius and M. nausithous (Lepidoptera: Lycaenidae). Entomol. Gener. 23: 215--222.Google Scholar
  22. Fraser, A. M., Tregenza, T., Wedell, N., Elgar, M. A., and Pierce, N. E. (2002). Oviposition tests of ant preference in a myrmecophilous butterfly. J. Evol. Biol. 15: 861--870.CrossRefGoogle Scholar
  23. Grundel, R., Pavlovic, N. B., and Sulzman, C. L. (1998). The effect of canopy cover and seasonal change on host plant quality for the endangered Karner blue butterfly (Lycaeides melissa samuelis). Oecologia 114: 243--250.CrossRefGoogle Scholar
  24. Heath, A., and Claassens, A. J. M. (2003). Ant-association among Southern African lycaenidae. J. Lepid. Soc. 57: 1--16.Google Scholar
  25. Henning, S. F. (1983). Biological groups within the Lycaenidae (Lepidoptera). J. Entomol. Soc. S. Afr. 46: 65--85.Google Scholar
  26. Hölldobler, B., and Wilson, E. O. (1990). The ants. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  27. Johst, K., Drechsler, M., Thomas, J. A., and Settele, J. (2006). Influence of mowing on the persistence of two endangered large blue butterfly species. J. Appl. Ecol. 43: 333–342.CrossRefGoogle Scholar
  28. Jordano, D., Rodriguez, J., Thomas, C. D., and Haeger, J. F. (1992). The distribution and density of a lycaenid butterfly in relation to Lasius ants. Oecologia 91: 439–446.CrossRefGoogle Scholar
  29. Larsen, T. B., and Pittaway, A. R. (1982). Notes on the ecology, biology and taxonomy of Apharitis acamas (Klug) (Lepidoptera: Lycaenidae). Entomol. Gaz. 33: 163–168.Google Scholar
  30. Nufio, C. R., and Papaj, D. R. (2001). Host marking behavior in phytophagous insects and parasitoids. Entomol. Exp. Appl. 99: 273–293.CrossRefGoogle Scholar
  31. Pierce, N. E., and Elgar, M. A. (1985). The influence of ants on host plant selection by Jalmenus evagoras, a myrmecophilous lycaenid butterfly. Behav. Ecol. Sociobiol. 16: 202–222.CrossRefGoogle Scholar
  32. Pierce, N. E., Kitching, R. L., Buckley, R. C., Taylor, M. F. J., and Benbow, K. F. (1987). The costs and benefits of cooperation between the Australien lycaenid butterfly, Jalmenus evagoras, and its attendant ants. Behav. Ecol. Sociobiol. 21: 237–248.CrossRefGoogle Scholar
  33. Pierce, N. E. (1995). Predatory and parasitic Lepidoptera: carnivores living on plants. J. Lepid. Soc. 49: 412--453.Google Scholar
  34. Pierce, N. E., Braby, M. F., Heath, A., Lohman, D. J., Mathew, J., Rand, D. B., and Travassos, M. A. (2002). The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu. Rev. Entomol. 47: 733–771.PubMedCrossRefGoogle Scholar
  35. Rhainds, M., Gries, G. and Morales, J. L. (1996). Oviposition deterrency in pineapple borer females, Thecla basilides (Lepidoptera: Lycaenidae). Ecol. Entomol. 21: 105--106.Google Scholar
  36. Rohlf, J. F., and Sokal, R. R. (1995). Statistical tables, Freeman, New York.Google Scholar
  37. Roy, D. B., and Thomas, J. A. (2003). Seasonal variation in the niche, habitat availability and population fluctuations of a bivoltine thermophilous insect near its range margin. Oecologia 134: 439--444.PubMedGoogle Scholar
  38. Schlick-Steiner, B. C., Steiner, F. M., Höttinger, H., Nikiforov, A., Mistrik, R., Schafellner, C., Baier, P., and Christian, E. (2004). A butterflys chemical key to various ant forts: intersection-odour or aggregate-odour multi-host mimicry? Naturwissenschaften 91: 209--214.PubMedCrossRefGoogle Scholar
  39. Seufert, P., and Fiedler, K. (1996a). The influence of ants on patterns of colonization and establishment within a set of coexisting lycaenid butterflies in a south-east Asian tropical rain forest. Oecologia 106: 127--136.Google Scholar
  40. Seufert, P., and Fiedler, K. (1996b). Life history diversity and local co-existence of three closely related lycaenid butterflies (Lepidoptera: Lycaenidae) in Malaysian rain forests. Zool. Anz. 234: 229--239.Google Scholar
  41. Seufert, P., and Fiedler, K. (1999). Myrmecophily and parasitoid infestation of South-East Asian lycaenid butterfly larvae. Ecotropica 5: 59–64.Google Scholar
  42. Smiley, J. T., Atsatt, P. R., and Pierce, N. E. (1988). Local distribution of the lycaenid butterfly, Jalmaenus evagoras, in response to host ants and plants. Oecologia 76: 416–422.Google Scholar
  43. Stankiewicz, A., and Sielezniew, M. (2002). Host specificity of Maculinea teleius BGSTR. and M. nausithous BGSTR. (Lepidoptera: Lycaenidae) The new insight. Ann. Zool. 52: 403–408.Google Scholar
  44. Thomas, J. A. (1984). The behaviour and habitat requirements of Maculinea nausithous (the dusky large blue butterfly) and Maculinea teleius (the scarce large blue butterfly) in France. Biol. Conserv. 28: 325–347.CrossRefGoogle Scholar
  45. Thomas, J. A., and Wardlaw, J. C. (1992). The capacity of a Myrmica ant nest to support a predacious species of Maculinea butterfly. Oecologia 91: 101–109.Google Scholar
  46. Thomas, J. A., Elmes, G. W., and Wardlaw, J. C. (1993). Contest competition among Maculinea rebeli butterfly larvae in ant nests. Ecol. Entomol. 18: 73–76.Google Scholar
  47. Thomas, J. A., and Elmes, G. W. (2001). Food-plant niche selection rather than the presence of ant nests explains oviposition patterns in the myrmecophilous butterfly genus Maculinea. Proc. R. Soc. Lond. B 268: 471–477.CrossRefGoogle Scholar
  48. Van Der Meer, R. K., and Alonso, L. E. (1998). Pheromone directed behavior in ants. In Vander Meer, R. K., Breed, M. D., Espelie, K. E., and Winston, M. L. (eds.), Pheromone communication in social insects, Westview Press, Oxford, pp. 3–33.Google Scholar
  49. Van Dyck, H., Oostermeijer, J. G. B., Talloen, W., Feenstra, W., Van der Hidde, A., and Wynhoff, I. (2000). Does the presence of ant nests matter for oviposition to a specialized myrmecophilous Maculinea butterfly? Proc. R. Soc. Lond. B 267: 861–866.CrossRefGoogle Scholar
  50. Wagner, D. (1993). Species-specific effects of tending ants on the development of lycaenid butterfly larvae. Oecologia 96: 276–281.CrossRefGoogle Scholar
  51. Wagner, D., and Kurina, L. (1997). The influence of ants and water availability on oviposition behaviour and survivorship of a facultative ant-tended herbivore. Ecol. Entomol. 22: 352–360.CrossRefGoogle Scholar
  52. Weeks, J. A. (2003). Parasitism and ant protection alter the survival of the lycaenid Hemiargus isola. Ecol. Entomol. 28: 228–232.CrossRefGoogle Scholar
  53. Wynhoff, I. (2001). At home on foreign meadows: the reintroduction of two Maculinea butterfly species. Doctoral thesis. Wageningen Agricultural University.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.UFZ Centre for Environmental Research, Department of Community EcologyHalleGermany
  2. 2.Centre for Ecology and Hydrology (Dorset)Winfrith Technology CentreDorchesterUK

Personalised recommendations