Advertisement

Journal of Insect Behavior

, Volume 19, Issue 5, pp 559–571 | Cite as

Visual Communication Behaviour as a Mechanism Behind Reproductive Interference in Three Pygmy Grasshoppers (Genus Tetrix, Tetrigidae, Orthoptera)

  • Axel Hochkirch
  • Jana Deppermann
  • Julia Gröning
Article

Specific mate recognition systems should enable species to recognize conspecific mates correctly. However, heterospecific matings have been observed in a variety of taxa. One of these cases is the pygmy grasshopper genus Tetrix, in which three species show sexual interactions. T. ceperoi males mount preferably females of T. subulata, but they are rejected as mates. T. subulata males prefer T. undulata females over conspecific females and heterospecific matings occur. Here, we study the underlying behavioural mechanisms of this pattern by analysing the visual courtship behaviour of the three species videographically. We test the hypothesis that the displays of T. ceperoi are highly differentiated from the other species, while the courtship of T. subulata and T. undulata is more similar. This is supported by our results: while T. ceperoi males perform a fast movement of high amplitude (“pronotal bobbing”), the other two species show only minor movements (“lateral swinging,” “frontal swinging”). The first function of a discriminant analysis of the temporal dimensions of the displays explained 96% of the variance. 100% of the T. ceperoi displays were classified correctly, whereas only 50% of the T. subulata and 81% of the T. undulata displays were grouped accurately. A two-way ANOVA revealed no significant effects of the direction of the “swinging” movements (laterally or frontally) and no interactions between direction and species either, whereas each temporal parameter differed significantly between the three species. The highest degree of differentiation was found between T. ceperoi and T. undulata, while T. subulata and T. undulata only differed significantly in two of the six temporal parameters. Our results suggest that the mismatings between T. undulata and T. subulata are caused by an insufficient specificity of the courtship behaviour. Apparently, ecological segregation of these two species could impede sexual interactions in the field.

KEY WORDS

hybridization reinforcement reproductive interference specific mate recognition systems premating isolation prezygotic isolation outbreeding 

Notes

ACKNOWLEDGMENTS

We wish to thank T. Eggers, A. Kratochwil and two anonymous referees for helpful comments on the manuscript. The district government Weser-Ems (national park administration) kindly permitted the access to the study sites. Research facilities and financial support were provided by the Division of Ecology at the University of Osnabrück. J. G. was supported by the GradFöG (Graduiertenförderung des Landes Niedersachsen), a post graduate studentship.

REFERENCES

  1. Amarasekare, P. (2003). Competitive coexistence in spatially structured environments: A synthesis. Ecol. Lett. 6: 1109–1122.CrossRefGoogle Scholar
  2. Andersson, M. (1994). Sexual selection. Princeton Univ. Press, Princeton, New Jersey.Google Scholar
  3. Bailey, W. J. (1991). Acoustic Behaviour of Arthropods. Chapman and Hall, London.Google Scholar
  4. Bateman, P. W., and Fleming, P. A. (2005). Direct and indirect costs of limb autotomy in field crickets, Gryllus bimaculatus. Anim. Behav. 69: 151–159.CrossRefGoogle Scholar
  5. Benediktov, A. (2005). Vibrational signals in the family Tetrigidae (Orthoptera). Proc. Rus. Ent. Sci. 76: 131–140.Google Scholar
  6. Bonduriansky, R. (2001). The evolution of male mate choice in insects: A synthesis of ideas and evidence. Biol. Rev. 76: 305–339.PubMedCrossRefGoogle Scholar
  7. Brown, W. L. Jr., and Wilson, E. O. (1956). Character displacement. Syst. Zool. 7: 49–64.CrossRefGoogle Scholar
  8. Dobzhansky, T. (1937). Genetics and the Origin of Species. Columbia Univ. Press, New York.Google Scholar
  9. Endler, J. A. (1992) Signals, signal condition, and the direction of evolution. Am. Nat. 169: 125–153.CrossRefGoogle Scholar
  10. Faber, A. (1953). Laut- und Gebärdensprache bei Insekten, Orthoptera (Geradflügler), Teil 1. Mitt. Staatl. Mus. Naturkd. Stutt. 287: 1–198.Google Scholar
  11. Forsman, A., and Appelqvist, S. (1999). Experimental manipulation reveals differential effects of color pattern on survival in male and female pygmy grasshopper. J. Evol. Biol. 12: 391–401.CrossRefGoogle Scholar
  12. Gröning, J., Kochmann, J., and Hochkirch, A. (2005). Dornschrecken (Orthoptera, Tetrigidae) auf den Ostfriesischen Inseln—Verbreitung, Koexistenz und Ökologie. Entomologie heute 17: 47–63.Google Scholar
  13. Hanski, I. (1981). Coexistence of competitors in patchy environments with and without predation. Oikos 37: 306–312.CrossRefGoogle Scholar
  14. Hassanali, A., Njagi, P. G. N., and Omer Bashir, M. (2005). Chemical ethology of locusts and related acridids. Annu. Rev. Entomol. 50: 223–245.PubMedCrossRefGoogle Scholar
  15. Helversen, O. V., and Elsner, N. (1977). Stridulatory movements of acridid grasshoppers recorded with an opto-electronic device. J. Comp. Physiol. 122: 53–64.CrossRefGoogle Scholar
  16. Hochkirch, A., Gröning, J., Loos, T., Metzing, C., and Reichelt, M. (2000). Specialized diet and feeding habits as key factors for the habitat requirements of the grasshopper species Tetrix subulata (Orthoptera: Tetrigidae). Entomol. Gen. 25: 39–51.Google Scholar
  17. Hochkirch, A., and Papen, M. (2001). Behaviour-related microhabitat utilization in Chorthippus apricarius (Linné, 1758) and Chorthippus biguttulus (Linné, 1758). Mitt. Dtsch. Ges. allg. angew. Ent. 13: 343–346.Google Scholar
  18. Huber, F. (1992). Behavior and neurobiology of acoustically oriented insects. Naturwissenschaften 79: 393–406.CrossRefGoogle Scholar
  19. Ingrisch, S., and Köhler, G. (1998). Die Heuschrecken Mitteleuropas. Westarp Wissenschaften, Magdeburg.Google Scholar
  20. Jacobs, W. (1953). Verhaltensbiologische Studien an Feldheuschrecken. Z. Tierpsychol., Beiheft 1: 1–230.Google Scholar
  21. Kleukers, R., van Nieukerken, E., Odé, B., Willemse, L., and van Wingerden, W. (1997). De Sprinkhanen en Krekels van Nederland (Orthoptera). Nederlandse Fauna I. KNNV Uitgeverij and EIS-Nederland, Leiden.Google Scholar
  22. Liou, L. W., and Price, T. D. (1994). Speciation by reinforcement of premating isolation. Evolution 48: 1451–1459.CrossRefGoogle Scholar
  23. Lock, K., and Durwael, L. (1999). One day activity pattern of the grasshopper species—Paratettix meridionalis (Orthoptera: Tetrigidae). Entomol. Gen. 24: 177–183.Google Scholar
  24. Mallet, J. (2005). Hybridization as an invasion of the genome. TREE 20: 229–237.PubMedGoogle Scholar
  25. Marshall, J. A., and Haes, E. C. M. (1990). Grasshoppers and Allied Insects of Great Britain and Ireland. Harley books, Colchester, Essex.Google Scholar
  26. McVean, A., and Field, L. H. (1996). Communication by substratum vibration in the New Zealand tree weta, Hemideina femorata (Stenopelmatidae: Orthoptera). J. Zool. 239: 101–122.CrossRefGoogle Scholar
  27. Otte, D. (1970): A comparative study of communicative behavior in grasshoppers. Univ. Mich. Mus. Zool. Misc. Pub. 141: 1–168.Google Scholar
  28. Paranjape, S. Y., Bhalerao, A. M., and Naidu, N. M. (1987). On etho-ecological characteristics and phylogeny of Tetrigidae. In: Bacetti, B. M. (Ed.), Evolutionary biology of Orthopteroid insects. Ellis Horwood, New York, Chichester, Brisbane, Toronto, pp. 386–395.Google Scholar
  29. Paterson, H. E. H. (1978). More evidence against speciation by reinforcement. S. African J. Sci. 74: 369–371.Google Scholar
  30. R Development Core Team (2004). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  31. Ragge, D. R., and Reynolds, W. J. (1998). The Songs of the Grasshoppers and Crickets of Western Europe. Harley Books, Colchester.Google Scholar
  32. Riede, K. (1986). Modification of the courtship song by visual stimuli in the grasshopper Gomphocerus rufus (Acrididae). Physiol. Entomol. 11: 61–74.Google Scholar
  33. Ryan, M. J. (1998). Sexual selection, receiver biases, and the evolution of sex differences. Science 281: 1999–2003.PubMedCrossRefGoogle Scholar
  34. Schoener, T. W. (1974). Resource partitioning in ecological communities. Science 185: 27–39.CrossRefPubMedGoogle Scholar
  35. Servedio, M. R., and Noor, M. A. F. (2003). The role of reinforcement in speciation: Theory and data. Annu. Rev. Ecol. Evol. Syst. 34: 339–364.CrossRefGoogle Scholar
  36. Thornhill, R., and Alcock, J. (2001). The Evolution of Insect Mating Systems. IUniverse.com, Lincoln.Google Scholar
  37. Venables, W. N., and Ripley, B. D. (2002). Modern applied statistics with S. Springer, New York.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Axel Hochkirch
    • 1
  • Jana Deppermann
    • 1
  • Julia Gröning
    • 1
  1. 1.Department of Biology and ChemistryUniversity of Osnabrück, Division of EcologyOsnabrückGermany

Personalised recommendations