Flexible Use of Patch-Leaving Mechanisms in a Parasitoid Wasp

  • Joep M. S. Burger
  • Ying Huang
  • Lia Hemerik
  • Joop C. van Lenteren
  • Louise E. M. Vet
Article

Classical optimal-foraging theory predicts that a parasitoid is less likely to leave a patch after a host encounter when the host distribution is aggregated, whereas a parasitoid is more likely to leave after a host encounter when the host distribution is regular. Field data on host distributions in the area of origin of the whitefly parasitoid Encarsia formosa showed that whiteflies aggregate at several spatial scales. However, infested leaves most likely contained a single host. This suggests that a host encounter is not enough to decide when to leave. We therefore tested the effect of host distribution and parasitoid experience on patch-leaving behavior. Each parasitoid was observed for several consecutive days in a three-dimensional arena with leaflets containing on average one host per leaflet in an either regular or aggregated host distribution. A proportional hazards model showed that a host encounter decreased the leaving tendency on a leaflet with one host when the time since the latest host encounter was short, but increased the leaving tendency when the time since the latest host encounter was long, independent of host distribution. We conclude that a parasitoid can switch from decreasing to increasing its tendency to leave a patch after a host encounter. We propose two hypotheses that may explain the evolution of such a switching mechanism.

KEY WORDS:

optimal foraging patch-leaving behavior host distribution Encarsia formosa whitefly 

Notes

ACKNOWLEDGMENTS

We would like to thank Mohammad Javad Ardeh and Yu Tong Qiu for standing in during some observations, and Leo Koopman, Frans van Aggelen and Andre Gidding for rearing the whitefly.

REFERENCES

  1. Bernstein, C., and Driessen, G. (1996). Patch-marking and optimal search patterns in the parasitoid Venturia canescens. J. Anim. Ecol. 65: 211–219.CrossRefGoogle Scholar
  2. Birkett, M. A., Chamberlain, K., Guerrieri, E., Pickett, J. A., Wadhams, L. J., and Yasuda, T. (2003). Volatiles from whitefly-infested plants elicit a host-locating response in the parasitoid, Encarsia formosa. J. Chem. Ecol. 29: 1589–1600.PubMedCrossRefGoogle Scholar
  3. Burger, J. M. S., Gort, G., van Lenteren, J. C., and Vet, L. E. M. (2004). Natural history of whitefly in Costa Rica: An evolutionary starting point. Ecol. Entomol. 29: 150–163.CrossRefGoogle Scholar
  4. Charnov, E. L. (1976). Optimal foraging, marginal value theorem. Theor. Pop. Biol. 9: 129–136.CrossRefGoogle Scholar
  5. Clark, C. W., and Mangel, M. (2000). Dynamic State Variable Models in Ecology, Oxford University Press, Oxford.Google Scholar
  6. Corbet, S. A. (1971). Mandibular gland secretion of larvae of flour moth, Anagasta kuehniella, contains an epideictic pheromone and elicits oviposition movements in a hymenopteran parasite. Nature 232: 481–484.PubMedCrossRefGoogle Scholar
  7. Cox, D. R. (1972). Regression models and life tables. J. R. Statist. Soc. B 34: 187–220.Google Scholar
  8. Driessen, G., and Bernstein, C. (1999). Patch departure mechanisms and optimal host exploitation in an insect parasitoid. J. Anim. Ecol. 68: 445–459.CrossRefGoogle Scholar
  9. Driessen, G., Bernstein, C., van Alphen, J. J. M., and Kacelnik, A. (1995). A count-down mechanism for host search in the parasitoid Venturia canescens. J. Anim. Ecol. 64: 117–125.CrossRefGoogle Scholar
  10. Eggenkamp-Rotteveel Mansveld, M. H., van Lenteren, J. C., Ellenbroek, J. M., and Woets, J. (1982). The parasite-host relationship between Encarsia formosa (Hym., Aphelinidae) and Trialeurodes vaporariorum (Hom., Aleyrodidae). XII. Population dynamics of parasite and host in a large, commercial glasshouse and test of the parasite-introduction method used in the Netherlands. Z. angew. Entomol. 93: 113–130 (first part); 258–279 (second part).Google Scholar
  11. Godfray, H. C. J. (1994). Parasitoids: Behavioral and Evolutionary Ecology, Princeton University Press, Princeton.Google Scholar
  12. Haccou, P., and Hemerik, L. (1985). The influence of larval dispersal in the cinnabar moth (Tyria jacobaeae) on predation by the red wood ant (Formica polyctena): An analysis based on the proportional hazards model. J. Anim. Ecol. 54: 755–770.CrossRefGoogle Scholar
  13. Hemerik, L., Driessen, G., and Haccou, P. (1993). Effects of intra-patch experiences on patch time, search time and searching efficiency of the parasitoid Leptopilina clavipes. J. Anim. Ecol. 62: 33–44.CrossRefGoogle Scholar
  14. Houston, A. I., and McNamara, J. M. (1999). Models of Adaptive Behaviour, Cambridge University Press, Cambridge.Google Scholar
  15. Iwasa, Y., Higashi, M., and Yamamura, N. (1981). Prey distribution as a factor determining the choice of optimal foraging strategy. Am. Nat. 117: 710–723.CrossRefGoogle Scholar
  16. Jervis, M. A., Heimpel, G. E., Ferns, P. N., Harvey, J. A., and Kidd, N. A. C. (2001). Life-history strategies in parasitoid wasps: A comparative analysis of ‘ovigeny’. J. Anim. Ecol. 70: 442–458.CrossRefGoogle Scholar
  17. Kaiser, L., Perez-Maluf, R., Sandoz, J. C., Pham-Delegue, M. H. (2003). Dynamics of odour learning in Leptopilina boulardi, a hymenopterous parasitoid. Anim. Behav. 66: 1077–1084.CrossRefGoogle Scholar
  18. Kalbfleisch, J. D., and Prentice, R. L. (1980). The Statistical Analysis of Failure Time Data, Wiley, New York.Google Scholar
  19. van Lenteren, J. C. (2000). A greenhouse without pesticides: Fact or fantasy? Crop Protection 19: 375–384.CrossRefGoogle Scholar
  20. van Lenteren, J. C., Nell, H. W., Sevenster-van der Lelie, L. A., and Woets, J. (1976). The parasite-host relationship between Encarsia formosa (Hymenoptera: Aphelinidae) and Trialeurodes vaporariorum (Homoptera: Aleyrodidae). I. Host finding by the parasite. Entomol. Exp. Appl. 20: 123–130.Google Scholar
  21. van Lenteren, J. C., van Roermund, H. J. W., and Sütterlin, S. (1996). Biological control of greenhouse whitefly (Trialeurodes vaporariorum) with the parasitoid Encarsia formosa: How does it work? Biol. Control 6: 1–10.CrossRefGoogle Scholar
  22. Menzel, R., and Muller, U. (1996). Learning and memory in honeybees: From behavior to neural substrates. Annu. Rev. Neurosci. 19: 379–404.PubMedCrossRefGoogle Scholar
  23. Nell, H. W., Sevenster-van der Lelie, L. A., Woets, J., and van Lenteren, J. C. (1976). The parasite-host relationship between Encarsia formosa (Hymenoptera: Aphelinidae) and Trialeurodes vaporariorum (Homoptera: Aleyrodidae). II. Selection of host stages for oviposition and feeding by the parasite. Z. angew. Entomol. 81: 372–376.Google Scholar
  24. Neter, J., Kutner, M. H., Nachtsheim, C. J., and Wasserman, W. (1996). Applied Linear Statistical Models, 4th ed., WCB/McGraw-Hill, Boston.Google Scholar
  25. Noldus, L. P. J. J., and van Lenteren, J. C. (1990). Host aggregation and parasitoid behaviour: Biological control in a closed system. In Mackauer, M., Ehler, L. E., and Roland, J. (Eds.), Critical Issues in Biological Control, Intercept, Andover, pp. 229–262.Google Scholar
  26. Outreman, Y., Le Ralec, A., Wajnberg, E., and Pierre, J. S. (2001). Can imperfect host discrimination explain partial patch exploitation in parasitoids? Ecol. Entomol. 26: 271–280.CrossRefGoogle Scholar
  27. Outreman, Y., Le Ralec, A., Wajnberg, E., and Pierre, J. S. (2005). Effects of within- and among-patch experiences on the patch-leaving decision rules in an insect parasitoid. Behav. Ecol. Sociobiol. 58: 208–217.CrossRefGoogle Scholar
  28. Papaj, D. R., and Lewis, A. C. (1993). Insect Learning: Ecological and Evolutionary Perspectives, Chapman and Hall, London.Google Scholar
  29. Rodriguez-Saona, C., Crafts-Brandner, S. J., and Canas, L. A. (2003). Volatile emissions triggered by multiple herbivore damage: Beet armyworm and whitefly feeding on cotton plants. J. Chem. Ecol. 29: 2539–2550.PubMedCrossRefGoogle Scholar
  30. Roitberg, B. D., Mangel, M., Lalonde, R. G., Roitberg, C. A., van Alphen, J. J. M., and Vet, L. (1992). Seasonal dynamic shifts in patch exploitation by parasitic wasps. Behav. Ecol. 3: 156–165.CrossRefGoogle Scholar
  31. Romeis, J., and Zebitz, C. P. W. (1997). Searching behaviour of Encarsia formosa as mediated by colour and honeydew. Entomol. Exp. Appl. 82: 299–309.CrossRefGoogle Scholar
  32. Steidle, J. L. M., and van Loon, J. J. A. (2003). Dietary specialization and infochemical use in carnivorous arthropods: testing a concept. Entomol. Exp. Appl. 108: 133–148.CrossRefGoogle Scholar
  33. Stephens, D. W., and Krebs, J. R. (1986). Foraging Theory, Princeton University Press, Princeton.Google Scholar
  34. Sütterlin, S., and van Lenteren, J. C. (2000). Pre- and post-landing response of the parasitoid Encarsia formosa to whitefly hosts on Gerbera jamesonii. Entomol. Exp. Appl. 96: 299–307.CrossRefGoogle Scholar
  35. Takasu, K., and Lewis, W. J. (1996). The role of learning in adult food location by the larval parasitoid, Microplitis croceipes (Hymenoptera: Braconidae). J. Insect Behav. 9: 265–281.CrossRefGoogle Scholar
  36. Tenhumberg, B., Keller, M. A., Tyre, A. J., and Possingham, H. P. (2001). The effect of resource aggregation at different scales: optimal foraging behavior of Cotesia rubecula. Am. Nat. 158: 505–518.CrossRefPubMedGoogle Scholar
  37. Turlings, T. C. J., Bernasconi, M., Bertossa, R., Bigler, F., Caloz, G., and Dorn, S. (1998). The induction of volatile emissions in maize by three herbivore species with different feeding habits: Possible consequences for their natural enemies. Biol. Control 11: 122–129.CrossRefGoogle Scholar
  38. van Alphen, J. J. M., Bernstein, C., and Driessen, G. (2003). Information acquisition and time allocation in insect parasitoids. TREE 18: 81–87.Google Scholar
  39. van Roermund, H. J. W., and van Lenteren, J. C. (1992). The parasite-host relationship between Encarsia formosa (Hymenoptera: Aphelinidae) and Trialeurodes vaporariorum (Homoptera: Aleyrodidae). XXXV. Life-history parameters of the greenhouse whitefly parasitoid Encarsia formosa as a function of host stage and temperature. Wageningen Agric. Univ. Papers 92.3: 103–147.Google Scholar
  40. van Roermund, H. J. W., and van Lenteren, J. C. (1995). Residence times of the whitefly parasitoid Encarsia formosa on tomato leaflets. J. Appl. Entomol. 119: 465–471.CrossRefGoogle Scholar
  41. van Roermund, H. J. W., Hemerik, L., and van Lenteren, J. C. (1994). Influence of intra-patch experiences and temperature on the time allocation of the whitefly parasitoid Encarsia formosa. J. Insect Behav. 7: 483–501.CrossRefGoogle Scholar
  42. Vet, L. E. M., and Dicke, M. (1992). Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37: 141–172.CrossRefGoogle Scholar
  43. Vet, L. E. M., Lewis, W. J., and Cardé, R.T. (1995). Parasitoid foraging and learning. In Bell, W., and Cardé, R. T. (Eds.), Chemical Ecology in Insects, 2nd ed., Chapman and Hall, London, pp. 65–101.Google Scholar
  44. Vet, L. E. M. (1999). From chemical to population ecology: Infochemical use in an evolutionary context. J. Chem. Ecol. 25: 31–49.CrossRefGoogle Scholar
  45. Visser, M. E., van Alphen, J. J. M., and Hemerik, L. (1992). Adaptive superparasitism and patch time allocation in solitary parasitoids—an ESS model. J. Anim. Ecol. 61: 93–101.CrossRefGoogle Scholar
  46. Vos, M., Hemerik, L., and Vet, L. E. M. (1998). Patch exploitation by the parasitoids Cotesia rubecula and Cotesia glomerata in multi-patch environments with different host distributions. J. Anim. Ecol. 67: 774–783.CrossRefGoogle Scholar
  47. Waage, J. K. (1979). Foraging for patchily-distributed hosts by the parasitoid, Nemeritis canescens. J. Anim. Ecol. 48: 353–371.CrossRefGoogle Scholar
  48. Wajnberg, E., Curty, C., and Colazza, S. (2004). Genetic variation in the mechanisms of direct mutual interference in a parasitic wasp: Consequences in terms of patch-time allocation. J. Anim. Ecol. 73: 1179–1189.CrossRefGoogle Scholar
  49. Wajnberg, E., Gonsard, P. A., Tabone, E., Curty, C., Lezcano, N., and Colazza, S. (2003). A comparative analysis of patch-leaving decision rules in a parasitoid family. J. Anim. Ecol. 72: 618–626.CrossRefGoogle Scholar
  50. Wajnberg, E., Rosi, M. C., and Colazza, S. (1999). Genetic variation in patch time allocation in a parasitic wasp. J. Anim. Ecol. 68: 121–133.CrossRefGoogle Scholar
  51. Wang, X. G., and Keller, M. A. (2003). Patch time allocation by the parasitoid Diadegma semiclausum (Hymenoptera: Ichneumonidae). I. Effect of interpatch distance. J. Insect Behav. 16: 279–293.CrossRefGoogle Scholar
  52. Yin, J. C. P., Wallach, J. S., Del Vecchio, M., Wilder, E. L., Zhou, H., Quinn, W. G., and Tully, T. (1994). Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79: 49–58.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Joep M. S. Burger
    • 1
    • 6
  • Ying Huang
    • 1
    • 2
    • 5
  • Lia Hemerik
    • 3
  • Joop C. van Lenteren
    • 1
  • Louise E. M. Vet
    • 1
    • 4
  1. 1.Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
  2. 2.Institute of Life ScienceBeijing Normal UniversityBeijingP. R. China
  3. 3.BiometrisWageningen UniversityWageningenThe Netherlands
  4. 4.Netherlands Institute of EcologyMaarssenThe Netherlands
  5. 5.Institute of Animal and Plant QuarantineChinese Academy of Inspection and QuarantineBeijingP. R. China
  6. 6.Department of GeneticsUniversity of GeorgiaAthensUSA

Personalised recommendations