Journal of Insect Behavior

, Volume 18, Issue 1, pp 131–148

Female Mating History Influences Copulation Behavior but Not Sperm Release in the Orb-Weaving Spider Tetragnatha versicolor (Araneae, Tetragnathidae)

Article

Abstract

We examined the influence of female mating history on copulation behavior and sperm release in the haplogyne spider Tetragnatha versicolor. Despite significant behavioral differences during mating, males released equivalent amounts of sperm to virgin and non-virgin females. When mating with non-virgin females, males showed twice as many pedipalp insertions and half the copulation duration as compared to virgin females; however, males were as likely to mate with non-virgin as virgin females. Even with these overt behavioral differences, males released half of the sperm contained within their pedipalps during mating, regardless of female mating history. With respect to male mating order, first or second, we suggest the numbers of sperm released would lead to an expectation of unbiased paternity. In this species, sperm release is not directly proportional to total copulationduration.

sperm competition sexual selection arthropod arachnid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrade, M. C. B. (1996). Sexual selection for male sacrifice in the Australian redback spider. Science 271: 70–72.Google Scholar
  2. Austad, S. N. (1982). First male sperm priority in the bowl and doily spider Frontinella pyramitela. Evolution 36: 777–785.Google Scholar
  3. Austad, S. N. (1984). Evolution of sperm priority patterns in spiders. In Smith, R. L. (ed.), Sperm Competition and the Evolution of Animal Mating Systems, Academic Press, New York, pp. 223–249.Google Scholar
  4. Bellis, M. A., Barker, R. R., and Gage, M. J. G. (1990). Variation in rat ejaculates is consistent with the kamikaze sperm hypothesis. J. Mammol. 71: 479–480.Google Scholar
  5. Birkhead, T. R., and Moller, A. P. (1998). Sperm Competition and Sexual Selection, Academic Press, New York.Google Scholar
  6. Boorman, E., and Parker, G. A. (1976). Sperm (ejaculate) competition in Drosophila melanogaster, and the reproductive value of females to males in relation to female age and mating status. Ecol. Entomol. 1: 145–155.Google Scholar
  7. Bukowski, T. C., and Christenson, T. E. (1997). Determinants of sperm release and storage in a spiny orbweaving spider, Micrathena gracilis. Anim. Behav. 53: 381–395.CrossRefGoogle Scholar
  8. Bukowski, T. C., Linn, C. D., and Christenson, T. E. (2001). Copulation and sperm release in Gasteracantha cancriformis (Araneae: Araneidae): Differential male behavior based on female mating history. Anim. Behav. 62: 887–895.CrossRefGoogle Scholar
  9. Christenson, T. E. (1989). Sperm depletion in the golden orb-weaving spider, Nephila clavipes (Araneae, Araneidae). J. Arachnol. 17: 115–118.Google Scholar
  10. Christenson, T. E. (1990). Natural selection and reproduction: A study of the golden orb-weaving spider, Nephila clavipes. In Dewsbury, D. A. (ed.), Contemporary Issues in Comparative Psychology, Sinauer, Sunderland MA, pp. 149–174.Google Scholar
  11. Christenson, T. E., and Conn, J. (1988). Male advantage for egg fertilization in the golden orb-weaving spider (Nephila clavipes). J. Comp. Psych. 102: 312–318.CrossRefGoogle Scholar
  12. Cook, P. A., and Gage, M. J. G. (1995). Effects of risks of sperm competition on the numbers of eupyrene and apyrene sperm ejaculated by the moth Plodia interpunctella (Lepidoptera, Pyralidae). Behav. Ecol. Sociobiol. 36: 261–268.Google Scholar
  13. Cook, P. A., Harvey, I. F., and Parker, G. A. (1997). Predicting variation in sperm precedence. Phil. Trans. R. Soc. Land. B 352: 771–780.CrossRefGoogle Scholar
  14. Danielson-François, A. (submitted). Natural variation in sperm release behavior among males generates inter- and intra-specific paternity patterns.Google Scholar
  15. Danielson-François, A., Fetterer, C., and Smallwood, P. (2002). Body condition and mate choice in Tetragnatha elongata (Araneae: Tetragnathidae). J. Arachnol. 30: 20–30.Google Scholar
  16. de Jong, P. W., Brakefield, P. M., and Geerinck, B. P. (1998). The effect of female mating history on sperm precedence in the two-spot ladybird, Adalia bipunctata (Coleoptera, Coccinellidae). Behav. Ecol. 9: 559–565.CrossRefGoogle Scholar
  17. Eberhard, W., Guzman-Gomez, S., and Catley, K. (1993). Correlation between spermathecal morphology in mating systems in spiders. Biol. J. Linn. Soc. 50: 197–209.CrossRefGoogle Scholar
  18. Eberhard, W. (1996). Female Control: Sexual Selection by Cryptic Female Choice, Princeton University Press, Princeton.Google Scholar
  19. Elgar, M. A. (1998). Sperm competition and sexual selection in spiders and other arachnids. In Birkhead, T. R., and Moller, A. P. (eds.), Sperm Competition and Sexual Selection, Academic Press, New York, pp. 307–337.Google Scholar
  20. Elgar, M. A., Schneider, J. M., and Herberstein, M. E. (2000). Female control of paternity in the sexually cannibalistic spider Argiope keyserlingi. Proc. R. Soc. Lond. B 267: 2439–2443.CrossRefGoogle Scholar
  21. Gage, M. J. G. (1991). Risk of sperm competition directly affects ejaculate size in the Mediterranean fruit fly. Anim. Behav. 42: 1036–1037.Google Scholar
  22. Gage, M. J. G., and Baker, R. R. (1991). Ejaculate size varies with socio-sexual situation in an insect. Ecol. Entomol. 16: 331–337.Google Scholar
  23. Huber, B. A., and Eberhard, W. G. (1997). Courtship, copulation, and genital mechanics in Physocyclus globosus (Araneae, Pholcidae). Can. J. Zool. 74: 905–918.Google Scholar
  24. Kaster, J. L., and Jakob, E. M. (1997). Last -male sperm priority in a haplogyne spider: Correlations between female morphology and patterns of sperm usage. Ann. Am. Entomol. Soc. 90: 254–259.Google Scholar
  25. LaMunyon, C. W. (2000). Sperm storage by females of the polyandrous noctuid moth Heliothis virescens. Anim. Behav. 59: 395–402.CrossRefGoogle Scholar
  26. Lewis, S., and Austad, S. (1990). Sources of intraspecific variation in sperm precedence in red flour beetles. Am. Nat. 135: 351–359.CrossRefGoogle Scholar
  27. LeSar, C., and Unzicker, J. (1978). Life history, habits and prey preferences of Tetragnatha laboriosa (Araneae: Tetragnathidae). Environ. Entomol. 7: 879–884.Google Scholar
  28. Markow, T. A. (1996). Evolution ofDrosophila mating systems. Evol Biol 29: 73–106.Google Scholar
  29. Masumoto, T. (1993). The effect of the copulatory plug in the funnel-web spider, Agelena-Limbata (Araneae, Agelenidae). J. Arachnol. 21: 55–59.Google Scholar
  30. Montgomery, T. H. (1903). Studies on the habits of spiders, particularly those of the mating period. Proc. Acad. Nat. Sci., Philadelphia 55: 59–149.Google Scholar
  31. Parker, G. A. (1970). Sperm competition and its evolutionary consequences in the insects. Biol. Rev. 45: 525–567.Google Scholar
  32. Parker, G. A. (1998). Sperm competition and the evolution of ejaculates: Towards a theory base. In Birkhead, T. R. and Moller, A. P. (eds.), Sperm Competition and Sexual Selection, Academic Press, New York, pp. 307–337.Google Scholar
  33. Parker, G. A., Simmons, L. W., and Kirk, H. (1990). Analysing sperm competition data: Simple models for predicting mechanisms. Behav. Ecol. Sociobiol. 27: 55–65.CrossRefGoogle Scholar
  34. Pitnick, S., and Markow, T. A. (1994). Male gametic strategies: Sperm size, testes size and the allocation of ejaculate among successive males by the sperm-limited fly Drosophila pachea and its relatives. Am. Nat. 143: 785–819.CrossRefGoogle Scholar
  35. Robinson, M. (1982). Courtship and mating behaviour in spiders. Ann. Rev. Entomol. 27: 1–10.CrossRefGoogle Scholar
  36. Robinson, M., and Robinson, B. (1980). Comparative studies of the courtship and mating behavior of tropical Araneid spiders. Pacific Insects Monog. 36: 1–218.Google Scholar
  37. Schäfer, M., and Uhl, G. (2002). Determinants of paternity success in the spider Pholcus phalangioides (Pholcidae: Araneae): The role of male and female mating behaviour. Behav. Ecol. Sociobiol. 51: 368–377.CrossRefGoogle Scholar
  38. Schneider, J. M., Herberstein, M. E., de Crespigny, F. C., Ramamurthy, S., and Elgar, M. (2000). Sperm competition and small size advantage for males of the golden orb-web spider Nephila edulis. J. Evol Biol. 13: 939–946.CrossRefGoogle Scholar
  39. Simmons, L. W., Craig, M., Llorens, T., Schinzig, M., and Hosken, D. (1993). Bushcricket spermatophores vary in accord with sperm competition and parental investment theory. Proc. R. Soc. Land. B 251: 183–186.Google Scholar
  40. Simmons, L. W., and Siva-Jothy, M. T. (1998). Sperm competition in insects: Mechanisms and the potential for selection. In Birkhead, T. R. and Moller, A. P. (eds.), Sperm Competition and Sexual Selection, Academic Press, New York, pp. 307–337.Google Scholar
  41. Simmons, L. W. (2001). Sperm competition and Its Evolutionary Consequences in the Insects, Princeton University Press, Princeton.Google Scholar
  42. Snook, R. R., and Markow, T. A. (2001). Mating system evolution in sperm- heteromorphic Drosophila. J. Insect Physiol. 47: 957–964.CrossRefGoogle Scholar
  43. Suter, R. B. (1990). Courtship and assessment of virginity by male bowl and doily spiders. Anim. Behav. 39: 307–313.Google Scholar
  44. Uhl, G., Huber, B. A., and Rose, W. (1995). Male pedipalp morphology and copulatory mechanism in Pholcus phalangioides (Fuesslin 1775) (Araneae, Pholcidae). Bull. Br. Arachnol. Soc. 10: 1–9.Google Scholar
  45. Uhl, G., and Vollrath, F. (1998). Genital morphology of Nephila edulis: Implications for sperm competition in spiders. Can. J. Zool. 76: 39–47.CrossRefGoogle Scholar
  46. Watson, P. J. (1990). Female -enhanced male competition determines the 1st mate and principal sire in the spider Linyphia litigiosa (Linyphiidae). Behav. Ecol. Sociobiol. 26: 77–90.CrossRefGoogle Scholar
  47. Wedell, N., and Cook, P. A. (1999). Butterflies tailor their ejaculate in response to sperm competition risk and intensity. Proc. R. Soc. Land. Series B 266: 1033–1039.CrossRefGoogle Scholar
  48. West, H. P., and Toft, S. (1999). Last male sperm priority and the mating system of the haplogyne spider Tetragnatha extensa (Araneae: Tetragnathidae). J. Insect Behav. 12: 433–450.CrossRefGoogle Scholar
  49. Wiehle, H. (1967). Meta,-eine semientelegyne Gattung der Araneae (Arach.). Senckenberg. Biol. 48: 183–196.Google Scholar
  50. Yoward, P. J. (1998). Sperm competition in Pholcus phalangioides (Fuesslin, 1775) (Araneae, Pholcidae)—Shorter second copulations gain higher paternity reward than first copulations. Proc. I7th Eur. Coll. Arachnol. Edinburgh 7997, pp. 167–170.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Anne M. Danielson-François
    • 1
    • 3
  • Todd C. Bukowski
    • 2
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucson
  2. 2.Center for Insect ScienceUniversity of ArizonaTucson
  3. 3.Rice University MS-170Houston

Personalised recommendations