Journal of Insect Behavior

, Volume 18, Issue 5, pp 707–723 | Cite as

Oviposition Behavior of Pheropsophus aequinoctialis L. (Coleoptera: Carabidae): A Natural Enemy of Scapteriscus Mole Crickets (Orthoptera: Gryllotalpidae)

Article

Abstract

In the southeastern United States, South American Scapteriscus mole crickets are serious pests of turf and pasture grasses and vegetable seedlings. The larval stage of Pheropsophus aequinoctialis L. is a specialist predator of Scapteriscus mole cricket eggs and is currently under evaluation as a potential biological control agent. The objective of this study was to understand the oviposition behavior of P. aequinoctialis. The results indicated that in two-choice substrate oviposition arenas, female P. aequinoctialis significantly preferred to lay eggs in sand with mole cricket tunnels compared with artificially created tunnels or sand without tunnels. Physical tunnel presence influenced oviposition depth, but was not the only factor influencing oviposition. The reproductive strategy and behavior of P. aequinoctialis is discussed in relation to its specialized life history and to other carabid beetles displaying close host associations.

Keywords

specialist predator Pheropsophus Scapteriscus oviposition biocontrol Carabidae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chaboussou, F. (1939). Contribution à l’ étude biologique de Lebia grandis Hentz., prédateur américain du doryphore. Ann. Epiphyt. Phytogen. 5: 387–433.Google Scholar
  2. Chiverton, P. A. (1988). Searching behaviour and cereal aphid consumption by Bembidion lampros and Pterostichus cupreus, in relation to temperature and prey density. Entomol. Exp. Appl. 47: 143–182.CrossRefGoogle Scholar
  3. de Ruiter, P. C., van Stralen, M. R., van Euwijk, F. A., Slob, W., Bedaux, J. J. M., and Ernsting, G. (1989). Effects of hunger and prey traces on the search activity of the predatory beetle Notiophilus biguttatus. Entomol. Exp. Appl. 51: 87–95.CrossRefGoogle Scholar
  4. Dimmock, G., and Knab, F. (1904). Early stages of Carabidae. Springfield (Mass.) Mus. Nat. Hist. Bull. 1: 1–56.Google Scholar
  5. Erwin, T. L. (1967). Bombardier beetles (Coleoptera: Carabidae) of North America: Part II. Biology and behavior of Brachinus pallidus Erwin in California. Coleop. Bull. 21: 41–55.Google Scholar
  6. Erwin, T. L. (1970). A reclassification of bombardier beetles and a taxonomic revision of the North and Middle American species (Carabidae: Brachinida). Quaest. Entomol. 6: 4–215.Google Scholar
  7. Erwin, T. L. (1979). A review of the natural history and evolution of ectoparasitoid relationships in carabid beetles. In Erwin, T. L., Ball, G. E., and Whitehead, D. R. (eds.), Carabid beetles: Their evolution, natural history, and classification, Junk, Boston, MA, pp. 479–484.Google Scholar
  8. Erwin, T. L., and Erwin, L. J. M. (1976). Relationships of predacious beetles to tropical forest wood decay. Part II. The natural history of Eurycoleus macularis Chevrolat (Carabidae: Lebiini) and its implications in the evolution of ectoparasitoidism. Biotropica 8: 215–224.Google Scholar
  9. Evans, W. G. (1988). Chemically mediated habitat recognition in shore insects (Coleoptera: Carabidae; Hemiptera: Saldidae). J. Chem. Ecol. 14: 1441–1454.Google Scholar
  10. Forrest, T. G. (1985). Reproductive behavior. In Walker, T. J. (ed.), Mole crickets in Florida, Florida Agricultural Experiment Stations Bulletin No. 846, pp. 10–15.Google Scholar
  11. Frank, J. H., and Parkman, J. P. (1999). Integrated pest management of pest mole crickets with emphasis on the southeastern USA. Integr. Pest Manage. Rev. 4: 39–52.CrossRefGoogle Scholar
  12. Habu, A., and Sadanaga, K. (1965). Illustrations for identification of larvae of the Carabidae found in cultivated fields and paddyfields. Bull. Nat. Inst. Agric. Sci. (Jpn.) Ser. C 3: 169–177.Google Scholar
  13. Huk, T., and Kühne, B. (1999). Substrate selection by Carabus clatratus (Coleoptera, Carabidae) and its consequences for offspring development. Oecologia 121: 348–354.CrossRefGoogle Scholar
  14. Jenkins, W. R. (1964). A rapid centrifugal-flotation technique for extracting nematodes from soil. Plant Dis. Rep. 48: 692.Google Scholar
  15. Juliano, S. A. (1984). Multiple feeding and aggression among larvae of Brachinus lateralis Dejean (Coleoptera: Carabidae). Coleop. Bull. 38: 358–360.Google Scholar
  16. Juliano, S. A. (1985). The effects of body size on mating and reproduction in Brachinus lateralis (Coleoptera: Carabidae). Ecol. Entomol. 10: 271–280.Google Scholar
  17. Lake, P. C. (2000). Behaviors of Pheropsophus aequinoctialis (Coleoptera: Carabidae) affecting its ability to locate its larval food, eggs of Scapteriscus spp. (Orthoptera: Gryllotalpidae); and the effect of moisture on oviposition depth in Scapteriscus abbreviatus, MS Thesis, University of Florida, Gainesville.Google Scholar
  18. Liebherr, J. K., and Ball, G. E. (1990). The first instar larva of Eripus oaxacanus Straneo & Ball (Coleoptera: Carabidae: Peleciini): Indicator of affinity or convergence? Syst. Entomol. 15: 69–79.Google Scholar
  19. Lindroth, C. H. (1954). Die Larve von Lebia chlorocephala Hoffm. (Coleoptera, Carabidae). Opusc. Entomol. 19: 29–33.Google Scholar
  20. Lövei, G. L., and Sunderland, K. D. (1996). Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu. Rev. Entomol. 41: 231–256.PubMedGoogle Scholar
  21. Salt, G. (1928). Notes on the life history of Pelecium sulcatum Guérin. Psyche 35: 131–134.Google Scholar
  22. SAS Institute (2000). SAS Software Version 8.01, SAS Institute, Cary, NC.Google Scholar
  23. Silvestri, F. (1905). Contribuzione alla conoscenza della metamorfosi e dei costumi della Lebia scapularis Fourc. Redia 2: 68–82.Google Scholar
  24. Spieles, D. J., and Horn, D. J. (1998). The importance of prey for fecundity and behavior in the gypsy moth (Lepidoptera: Lymantriidae) predator Calosoma sycophanta (Coleoptera: Carabidae). Environ. Entomol. 27: 458–462.Google Scholar
  25. Thiele, H. U. (1977). Carabid Beetles in Their Environments. A Study on Habitat Selection by Adaptations in Physiology and Behaviour, Springer, Berlin, Germany.Google Scholar
  26. Vinson, S. B. (1984). Parasitoid–host relationship. In Bell, W. J., and Cardé, R. T. (eds.), Chemical Ecology of Insects, Chapman and Hall, New York, pp. 205–233.Google Scholar
  27. Walker, T. J., Gafney, J. J., Kidder, A. W., and Ziffer, A. B. (1993). Florida Reach-Ins: Environmental chambers for entomological research. Am. Entomol. 39: 187–192.Google Scholar
  28. Weed, A. S. (2003). Reproductive strategy of Pheropsophus aequinoctialis L.: Fecundity, fertility, oviposition behavior; and influence of mole cricket egg chamber depth on larval survival, MS Thesis, University of Florida, Gainesville.Google Scholar
  29. Weseloh, R. M. (1981). Host location by parasitoids. In Nordlund, D. A., Jones, R. L., and Lewis, W. J. (eds.), Semiochemicals: Their Role in Pest Control, Wiley, New York, pp. 79–95.Google Scholar
  30. Weseloh, R. M. (1993). Behavior of the gypsy moth predator, Calosoma sycophanta L. (Carabidae: Coleoptera), as influenced by time of day and reproductive status. Can. Entomol. 125: 887–894.Google Scholar
  31. Wheater, C. P. (1989). Prey detection by some predatory Coleoptera (Carabidae and Staphylinidae). J. Zool. 218: 171–185.Google Scholar
  32. Wickham, H. F. (1894). On some aquatic larvae with notice of their parasites. Can. Entomol. 26: 39–41.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Entomology and Nematology DepartmentUniversity of FloridaGainesville
  2. 2.Tiverton

Personalised recommendations