Journal of Insect Behavior

, Volume 18, Issue 4, pp 557–566 | Cite as

Body-Size Dependent Difference in Death-Feigning Behavior of Adult Callosobruchus chinensis

  • Naofumi Hozumi
  • Takahisa MiyatakeEmail author


Size-dependent differences in death-feigning behavior, an anti-predator defense, was examined in the adult adzuki bean beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). A positive correlation was observed between the duration of death-feigning and adult body weight in two replicated experiments. Moreover, under starved condition, beetles reared under high (= lighter beetles) larval density showed significantly shorter longevity and a shorter duration of death-feigning than those reared under low (= heavier beetles) larval density. The body-size-dependent difference in the duration of death-feigning is discussed from the viewpoint of the difference in survival strategies between small and large beetles. Because small beetles don’t live as long, they have less time in which to reproduce and so any loss of that short time might be a greater proportion of their fitness lost. This is the first report on the body-size-dependent difference in death-feigning behavior in the adult holometabolic beetle.


anti-predatory behavior body weight larval density thanatosis tonic immobility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acheampong, A., and Mitchell, B. K. (1997). Quiescence in the Colorado potato beetle, Leptinotarsa decemlineata. Entomol. Exp. Appl. 82: 83–89.Google Scholar
  2. Allen, A. A. (1990). Death-feigning in Exochomus quadripustulatus L. (Col.: Coccinellidae). Entomol. Rec. 102: 23.Google Scholar
  3. Bleich, O. E. (1928). Thanatose und Hypnose bei Coleopteren. Berich. Wiss. Biol. 10: 1–61.Google Scholar
  4. Blest, A. D. (1964). Protective display and sound production in some New World arctiid and ctenuchid moths. Zoologica 49: 161–181.Google Scholar
  5. Blum, M. S., and Blum, N. A. (1979). Sexual Selection and Reproductive Competition in Insects. Academic Press, New York.Google Scholar
  6. Carlberg, U. (1986). Thanatosis and autotomy as defense in Baculum sp. 1 (Insecta: Phasmida). Zool. Anz. 217:39–53.Google Scholar
  7. Chemsak, J. A., and Linsley, E. G. (1970). Death-feigning among North American Cerambycidae (Coleoptera). Pan-Pacific Entomol. 46: 305–307.Google Scholar
  8. Danner, B. J., and Joern, A. (2003). Stage-specific behavioral responses of Ageneotettix deorum (Orthoptera: Acrididae) in the presence of lydosid predators. J. Insect Behav. 16: 453–464.Google Scholar
  9. Dingle, H., Blakley, N. R., and Miller, E. R. (1980). Variation in body size and flight performance in milkweed bugs (Oncopeltus). Evolution34: 371–385.Google Scholar
  10. Dudley, R. (1989). Thanatosis in the neotropical butterfly Caligo illioneus (Nymphalidae: Brassolinae). J. Res. Lepidoptera 28: 125–126.Google Scholar
  11. Du Porte, E. M. (1916). Death feigning reactions in Tychius picirostris. J. Anim. Behav. 6: 138–149.Google Scholar
  12. Edmunds, M. (1972). Defensive behavior in Ghanaian praying mantids. Zool. J. Linn. Soc. 51: 1–32.Google Scholar
  13. Evans, D. L., and Schmidt, J. O. (1990). Insect Defenses: Adaptive Mechanisms and Strategies of Prey and Predators. State University of New York Press, New York.Google Scholar
  14. Fabre J. H. (1900). Souvenirs Entomologiques 7ème Série, Paris.Google Scholar
  15. Frost, S. W. (1959). Insect Life and Insect Natural History. Dover Publications, New York.Google Scholar
  16. Gage, M. J. G. (1995). Continuous variation in reproductive strategy as an adaptive response to population density in the moth Plodia interpunctella. Proc. R. Soc. Lond. B261: 25–30.Google Scholar
  17. Godden, D. H. (1972). The motor innervation of the leg musculature and motor output during thanatosis in the stick insect Carausius morosus Br. J. Comp. Physiol. 80: 201–225.Google Scholar
  18. Holmes, J. S. (1906). Death-feigning in Ranatra. J. Comp. Neurol. Psychol. 16: 200–216.Google Scholar
  19. Lang, F., Govind, C. K., Costello, W. J., and Greene, S. I. (1977). Developmental neuroethology: Changes in escape and defensive behavior during growth of the lobster. Science 197: 682–684.Google Scholar
  20. Larsen, T. B. (1991). The art of feigning death—thanatosis in Euploea (Danainae) and other aposematic butterflies. Entomol. Rec. 103:263–266.Google Scholar
  21. Lima, S. L., and Dill, L. M. (1990). Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. Zool. 68: 619–640.Google Scholar
  22. Miyatake, T. (2001a). Diurnal periodicity of death-feigning in Cylas formicarius (Coleoptera: Brentidae). J. Insect Behav. 14: 421–432.Google Scholar
  23. Miyatake, T. (2001b). Effects of starvation on death-feigning in adults of Cylas formicarius (Coleoptera: Brentidae). Ann. Entomol. Soc. Am. 94: 612–616.Google Scholar
  24. Miyatake, T., Katayama, K., Takeda, Y., Nakashima, A., Sugita, A., and Mizumoto, M. (2004). Is death-feigning adaptive? Heritable variation in fitness difference of death-feigning behaviour. Proc. R. Soc. Lond. B 271: 2293–2296.Google Scholar
  25. Moore, K. A., and Williams, D. D. (1990). Novel strategies in the complex defense repertoire of a stonefly (Pteronarcys dorsata) nymph. Oikos57: 49–56.Google Scholar
  26. Nishino, H., and Sakai, M. (1996). Behaviorally significant immobile state of so-called thanatosis in the cricket Gryllus bimaculatus DeGeer: Its characterization, sensory mechanism and function. J. Comp. Physiol. A 179: 613–624.Google Scholar
  27. Oliver, M. K. (1996). Death-feigning observed in Hippopsis lemniscata (Fabricius) (Coleoptera: Cerambycidae). Coleop. Bull. 50: 160–161.Google Scholar
  28. Peters, R. H. (1983). The Ecological Implications of Body Size. Cambridge University Press, Cambridge.Google Scholar
  29. Prohammer, L. A., and Wade, M. J. (1981). Geographic and genetic variation in death-feigning behavior in the flour beetle, Tribolium castaneum. Behav. Genet. 11:395–401.Google Scholar
  30. Sasaki, R., Nakasuji, F., and Fujisaki, K. (2002). Environmental factors determining wing form in the lygaeid bug, Dimorphopterus japonicus (Heteroptera: Lygaeidae). Appl. Entomol. Zool. 37: 329–333.Google Scholar
  31. SAS Institute (1998). StatView 5.0J. SAS Institute Inc, Cary NC.Google Scholar
  32. Shimada, M. (1990). Comparison of the density-dependent population process between laboratory and wild strains of Callosobruchus chinensis(L.). In Fujii, K., Gatehouse, A. M. R., Johnson, C. D., Mitchell, R., and Yoshida, T., (eds.), Bruchids and Legumes: Economics, Ecology and Coevolution, Kluwer Academic Publishers, Dordrecht, pp. 361–371.Google Scholar
  33. Simmons, L. W. (1986). Female choice in the field cricket, Gryllus bimaculatus (De Geer). Anim. Behav. 34: 1463–1470.Google Scholar
  34. Thornhill, R., and Alcock, J. (1983). The Evolution of Insect Mating Systems. Harvard University Press, Cambridge.Google Scholar
  35. Tojo, S., Morita, M., and Hiruma, K. (1985). Effects of juvenile hormone on some phase characteristics in the cotton cutworm, Spodoptera litura. J. Insect Physiol. 31: 243–249.Google Scholar
  36. Utida, S. (1941a). Studies on experimental population of the azuki bean weevil Callosobruchus chinensis (L.). I. The effect of population density on the progeny population. Mem. College Agric. Kyoto Imperial Univ. 48:1–31.Google Scholar
  37. Utida, S. (1941b). Studies on experimental population of the azuki bean weevil Callosobruchus chinensis (L.). IV. Analysis of density effect with respect to fecundity and fertility of eggs. Mem. College Agric. Kyoto Imperial Univ. 51: 1–26.Google Scholar
  38. van Veen, J. W., Sommeijer, M. J., and Monge, I. A. (1999). Behavioural development and abdomen inflation of gynes and newly mated queens of Melipona beecheii (Apidae, Meliponinae). Insect. Soc. 46: 361–365.Google Scholar
  39. Villet, M. H. (1999). The cicada genus Nyaran. gen. (Homoptera Cicadidae): systematics, behavior and conservation status. Trop. Zool. 12: 157–163.Google Scholar
  40. Wahle, R. A. (1992). Body-size dependent anti-predator mechanisms of the American lobster. Oikos 65: 52–60.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Laboratory of Evolutionary Ecology, Graduate School of Environmental ScienceOkayama UniversityOkayamaJapan
  2. 2.Shiga Prefecture Agricultural Technology Promotion CenterAdzuchi Town, ShigaJapan

Personalised recommendations