Journal of Insect Behavior

, Volume 18, Issue 3, pp 433–452

Absence of Learning and Local Specialization on Host Plant Selection by Heliconius erato

Article

Abstract

There is considerable interspecific variation in larval host plants (Passifloraceae) used among Heliconius erato (Lepidoptera: Nymphalidae) populations. This study evaluates the role of learning and the influence of interspecific variation in host plant attributes on such local specialization in H. erato host plant choices. Experiments were conducted under laboratory, insectary, and field conditions, with the two most widely used host plants in southern Brazil (Passiflora suberosa Linnaeus and Passiflora misera Humbold, Bonpland et Kunth). Larval feeding preference and induction were evaluated through choice tests for all instars. Oviposition was evaluated in relation to host plant preference, Hopkins host-selection principle, and conditioning time (for 3, 7, 11, or 15 days). Also, oviposition choice was tested regarding density, intemode length, and presence of intact terminal bud on P. suberosa and P. misera shoots. Both larvae and adults of H. erato phyllis showed preference for P. misera compared to P. suberosa, under all conditions. Larval feeding preference could not be induced for most instars. The Hopkins’ effect was not detected and oviposition choice could not be conditioned. Females alternated use of host plant species as a function of variation in either density or presence of terminal buds on shoots. Thus, our data indicate host plant preference in H. erato phyllis is not learned but innate. Therefore, we concluded that variation in local use of host plant by this butterfly in southern Brazil results from qualitative and quantitative variation of the passion vine species.

Keywords

heliconians passion vines induction of preference Hopkins’ host effect postimaginal conditioning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araújo, A. M. (1987). Teoria dos jogos e estratégias evolutivamente estáveis. Actas XVII Congr. Argent. Genét. 2: 27–33.Google Scholar
  2. Barron, A. (2001). The life and death of Hopkins’ host selection principle. J. Insect Behav. 14: 725–737.Google Scholar
  3. Benson, W. W. (1978). Resource partitioning in passion vine butterflies. Evolution 32: 493–518.Google Scholar
  4. Bernays, E. A., and Chapman, R. F. (1994). Host Plant Selection by Phytophagous Insects, Chapman and Hall, New York.Google Scholar
  5. Bernays, E. A., and Weiss, M. R. (1996). Induced food preferences in caterpillars: The need to identify mechanisms. Entomol. Exp. Appl. 78: 1–8.Google Scholar
  6. Bossart, J. L., and Scriber, J. M. (1999). Preference variation in the polyphagous tiger swallowtail butterfly (Lepidoptera: Papilionidae). Environ. Entomol. 28: 628–637.Google Scholar
  7. Brown, K. S., Jr. (1979). Ecologia geográfica e evolução nas florestas neotropicais, Universidade Estadual de Campinas, Campinas, Brazil.Google Scholar
  8. Conover, W. J. (1980). Practical Nonparametric Statistics, 2nd edn., Wiley, New York.Google Scholar
  9. Di Mare, R. A. (1984). Dinâmica populacional e efeito do endocruzamento em Heliconius erato phyllis, Unpublished MSc Thesis, Genetic Department, UFRGS, Porto Alegre, 134p.Google Scholar
  10. Ferro, V. G. (1998). Criação de Heliconius erato phyllis (Fabricius) (Lepidoptera, Nymphalidae) em condiçoes semi-naturais, Unpublished Honors Thesis, Zoology Department, UFRGS, Porto Alegre, 49p.Google Scholar
  11. Fox, L. R., and Morrow, P. A. (1981). Specialization: Species property or local phenomena? Science 211: 887–893.Google Scholar
  12. Gilbert, L. E. (1975). Ecological consequences of a coevolved mutualism between butterflies and plants. In Gilbert, L. E., and Raven, P. H. (eds.), Coevolution of Animals and Plants, U.T. Press, Austin, TX, pp. 210–240.Google Scholar
  13. Gilbert, L. E. (1991). Biodiversity of a central american Heliconius community: Pattern, process, and problems. In Price, P. W., Lewinsohn, T. M., Fernandes, G. W., and Benson, W. W. (eds.), Plant-Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions, Wiley, New York, pp. 403–427.Google Scholar
  14. Hanson, F. E. (1983). The behavioral and neurophysiological basis of food plant selection by lepidopterous larvae. In Ahmad, S. (ed.), Herbivorous Insects: Host Selections and Mechanisms, Academic, New York, pp. 3–23.Google Scholar
  15. Holzinger, H., and Holzinger, R. (1994). Heliconius and Related Genera, Sciences Nat, Vennete, France.Google Scholar
  16. Hopkins, A. D. (1917). Contribution to discussion. J. Econ. Entomol. 10: 92–93.Google Scholar
  17. Jaenike, J. (1990). Host specialization in phytophagous insects. Annu. Rev. Ecol. Syst. 21: 243–273.Google Scholar
  18. Jones, R. E. (1991). Host location and opposition on plants. In Bailey, W. J., and Heidsdill-Smith, J. (eds.), Reproductive Behavior of Insects: Individuals and Populations, Chapman and Hall, New York, pp. 108–137.Google Scholar
  19. Lopes, F. S. (1991). Padroes sazonais e evolução do uso de plantas hospedeiras de larvas por Heliconius erato phyllis (L.) (Lepidoptera, Nymphalidae) na Serra do Japi, São Paulo, Unpublished PhD Dissertation, Zoology Department, UNICAMP, Campinas, Brazil, 119p.Google Scholar
  20. Menna-Barreto, Y., and Araújo, A. M. (1985). Evidence for host plant preferences in Heliconius erato phyllis from southern Brazil (Nymphalidae). J. Res. Lepid. 24: 41–46.Google Scholar
  21. Mugrabi-Oliveira, E., and Moreira, G. R. P. (1996a). Conspecific mimics and low host plant availability reduce egg laying by Heliconius erato phyllis (Fabricius) (Lepidoptera: Nymphalidae). Rev. Bras. Zool. 13: 929–937.Google Scholar
  22. Mugrabi-Oliveira, E., and Moreira, G. R. P. (1996b). Size of and damage on shoots of Passiflora suberosa (Passifloraceae) influence oviposition site selection of Heliconius erato phyllis (Fabricius) (Lepidoptera: Nymphalidae). Rev. Bras. Zool. 13: 939–953.Google Scholar
  23. Papaj, D. R., and Lewis, A. C. (eds.). (1993). Insect Learning: Ecological and Evolutionary Perspectives, Chapman and Hall, New York.Google Scholar
  24. Périco, E. (1995). Interação entre quatro espécies de Heliconiini (Lepidoptera: Nymphalidae) e suas plantas hospedeiras (Passifloraceae) em uma floresta secundária do Rio Grande do Sul, Brasil. Biociências 3: 3–18.Google Scholar
  25. Périco, E., and Araújo, A. M. (1991). Suitability of host plants (Passifloraceae) and their acceptableness by Heliconius erato and Dryas iulia (Lepidoptera: Nymphalidae). Evol. Biol. 5: 59–74.Google Scholar
  26. Ramos, R. R., and Freitas, A. V. L. (1999). Population biology and wing color variation in Heliconius eratophyllis (Nymphalidae). J. Lepid. Soc. 53: 11–21.Google Scholar
  27. Renwick, J. A. A., and Chew, F. S. (1994). Oviposition behavior in Lepidoptera. Annu. Rev. Entomol. 39: 377–400.Google Scholar
  28. Rodrigues, D., and Moreira, G. R. P. (1999). Feeding preference of Heliconius erato (Lep: Nymphalidae) in relation to leaf age and consequences for larval performance. J. Lepid. Soc. 53: 108–113.Google Scholar
  29. Rodrigues, D., and Moreira, G. R. P. (2002). Geographical variation in larval host-plant use by Heliconius erato (Lepidoptera: Nymphalidae) and consequences for adult life history. Braz. J. Biol. 62: 321–332.Google Scholar
  30. Rodrigues, D., and Moreira, G. R. P. (2004). Seasonal variation in larval host plants and consequences for Heliconius erato (Lepidoptera: Nymphalidae) adult body size. Aust. Ecol. 29: 437–445.Google Scholar
  31. Rojas, J. C., and Wyatt, T. D. (1999). The role of pre- and post-imaginal experience in the host-finding and oviposition behaviour of the cabbage moth. Physiol. Entomol. 24: 83–89.Google Scholar
  32. Sacco, J. C. (1980). Passifloráceas. In Reitz, R. (ed.), Flora Ilustrada Catarinense, Herbário Barbosa Rodrigues, Itajaí, 130p.Google Scholar
  33. Scriber, J. M. (1984). Host-plant suitability. In Bell, W. J., and Cardé, R. T. (eds.), Chemical Ecology of Insects, Chapman and Hall, London, pp. 159–200.Google Scholar
  34. Singer, M. C. (1983). Determinants of multiple host use by a phytophagous insect population. Evolution 37: 389–403.Google Scholar
  35. Singer, M. C. (1986). The definition and measurement of oviposition preference in plant-feeding insects. In Miller, J., and Miller, T. (eds.), Insect-Plant Relations, Springer, New York, pp. 65–94.Google Scholar
  36. Sokal, R. R., and Rohlf, F. J. (1981). Biometry: The Principles and Practice of Statistics in Biological Research, 2nd edn., W. H. Freeman, New York.Google Scholar
  37. Solomon, B. P. (1981). Response of a host-specific herbivore to resource density, relative abundance, and phenology. Ecology 62: 1205–1214.Google Scholar
  38. Swihart, C. A., and Swihart, S. L. (1970). Colour selection and learned feeding preferences in the butterfly, Heliconius charitonius Linn. Anim. Behav. 18: 60–64.Google Scholar
  39. Thomas, C. D. (1987). Behavioural determination of diet breadth in insect herbivores: The effect of leaf age on choice of host species by beetles feeding on Passiflora vines. Oikos 48: 211–216.Google Scholar
  40. Thompson, J. N., and Price, P. W. (1977). Plant plasticity, phenology, and herbivore dispersion: Wild parsnip and the parsnip webworm. Ecology 58: 1112–1119.Google Scholar
  41. Turlings, T. C. J., Wackers, F. L., Vet, L. E. M., Lewis, W. J., and Tumlinson, J. H. (1993). Learning of host-finding cues by hymenopterous parasitoids. In Papaj, D. R., and Lewis, A. C. (eds.), Insect Learning: Ecological and Evolutionary Perspectives, Chapman and Hall, New York, pp. 51–78.Google Scholar
  42. van Emden, H. F., Sponagl, B., Wagner, E., Baker, T., Ganguly, S., and Douloumpaka, S. (1996). Hopkins “host selection principle,” another nail in its coffin. Physiol. Entomol. 21: 325–328.Google Scholar
  43. Wiklund, C. (1981). Generalist vs. specialist oviposition behaviour in Papilio machaon (Lepidoptera) and functional aspects on the hierarchy of oviposition preferences. Oikos 36: 163–170.Google Scholar
  44. Williams, K. S., Lincoln, D. E., and Ehrlich, P. R. (1983). The coevolution of Euphydryas chalcedona butterflies and their larval host plants. Oecologia 56: 323–329.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.PPG Ecologia, UFRGSAvenue Bento GonçalvesPorto AlegreBrazil
  2. 2.Departamento de Zoologia, UFRGSAvenue Bento GonçalvesPorto AlegreBrazil

Personalised recommendations