Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

TiO2–SnO2 Nanocomposites: Effect of Acid–Base and Structural-Adsorption Properties on Photocatalytic Performance

  • 12 Accesses

Abstract

The article considers the influence of acid–base and structural-adsorption properties on the photocatalytic activity of TiO2 and TiO2–SnO2 nanocomposites obtained by hydrolytic (HL) and hydrothermal (HT) synthesis methods. Acid–base properties were evaluated by Hammett indicator method. Structural-adsorption properties were studied using Brunauer–Emmett–Teller surface analysis (BET). Photocatalytic activity of the nanocomposites was determined using photodegradation of methylene blue (MB) and Congo red (CR) organic dyes. Synthesized materials were also characterized by X-ray fluorescence (XRF), powder X-ray diffraction (PXRD), high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). All the synthesized photocatalysts are mesoporous materials with developed surface area. The results demonstrated that HT series samples with both acidic and basic sites of Brønsted type are universal sorbents and photocatalysts that effectively remove both cationic and anionic dyes. HL series composites with Brønsted basic sites are only selective towards cationic dyes. The improved photocatalytic performance of the HT series sample containing 1% of SnO2 may attribute to the increased surface area and high content of Brønsted sites of different types.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    V.R. De Mendonça, O.F. Lopes, R.P. Fregonesi, T.R. Giraldi, C. Ribeiro, Appl. Surf. Sci. 298, 182 (2014)

  2. 2.

    J. Yuan, X. Zhang, H. Li, K. Wang, S. Gao, Z. Yin, H. Yu, X. Zhu, Z. Xiong, Y. Xie, Catal. Commun. 60, 129 (2015)

  3. 3.

    R. Bargougui, A. Pichavant, J.F. Hochepied, M.H. Berger, A. Gadri, S. Ammar, Opt. Mater. (Amst). 58, 253 (2016)

  4. 4.

    S.M. Patil, A.G. Dhodamani, S.A. Vanalakar, S.P. Deshmukh, S.D. Delekar, J. Phys. Chem. Solids 115, 127 (2018)

  5. 5.

    G. Yang, Z. Yan, T. Xiao, Appl. Surf. Sci. 258, 8704 (2012)

  6. 6.

    S.M. Hassan, A.I. Ahmed, M.A. Mannaa, Ceram. Int. 44, 6201 (2018)

  7. 7.

    C. Jia, H.S. Chen, P. Yang, J. Ind. Eng. Chem. 58, 278 (2018)

  8. 8.

    S. Stojadinović, N. Tadić, N. Radić, B. Grbić, R. Vasilić, Mater. Lett. 196, 292 (2017)

  9. 9.

    M. Huang, J. Yu, B. Li, C. Deng, L. Wang, W. Wu, L. Dong, F. Zhang, M. Fan, J. Alloys Compd. 629, 55 (2014)

  10. 10.

    I. Rangel-Vázquez, G. Del Angel, V. Bertin, F. González, A. Vázquez-Zavala, A. Arrieta, J.M. Padilla, A. Barrera, E. Ramos-Ramirez, J. Alloys Compd. 643, S144 (2015)

  11. 11.

    M. Huang, S. Yu, B. Li, L. Dong, F. Zhang, M. Fan, L. Wang, J. Yu, C. Deng, Ceram. Int. 40, 13305 (2014)

  12. 12.

    S. Das, V. Jayaraman, Prog. Mater. Sci. 66, 112 (2014)

  13. 13.

    L. Zhang, W. Yu, C. Han, J. Guo, Q. Zhang, H. Xie, J. Electrochem. Soc. 164, 651 (2017)

  14. 14.

    M. Shipochka, A. Eliyas, I. Stambolova, V. Blaskov, S. Vassilev, S. Simeonova, K. Balashev, Mater. Chem. Phys. 220, 249 (2018)

  15. 15.

    A. Enesca, L. Isac, L. Andronic, D. Perniu, A. Duta, Appl. Catal. B 147, 175 (2013)

  16. 16.

    M. Scarisoreanu, C. Fleaca, I. Morjan, A.M. Niculescu, C. Luculescu, E. Dutu, A. Ilie, I. Morjan, L.G. Florescu, E. Vasile, C.I. Fort, Appl. Surf. Sci. 418, 491 (2017)

  17. 17.

    K.K. Akurati, A. Vital, R. Hany, B. Bommer, T. Graule, M. Winterer, Int. J. Photoenergy 07, 153 (2005)

  18. 18.

    G.O. Testoni, R.A.C. Amoresi, G.M.M.M. Lustosa, J.P.C. Costa, M.V. Nogueira, M. Ruiz, M.A. Zaghete, L.A. Perazolli, Solid State Sci. 76, 65 (2018)

  19. 19.

    A.K. Patra, S.K. Das, A. Bhaumik, J. Mater. Chem. 21, 3925 (2011)

  20. 20.

    G. Nabi, Qurat-ul-Aain, N. R. Khalid, M. B. Tahir, M. Rafique, M. Rizwan, S. Hussain, T. Iqbal, A. Majid, J. Inorg. Organomet. Polym. Mater. 28, 1552 (2018).

  21. 21.

    M. Rafique, J. Jahangir, B. A. Z. Amin, M. Bilal Tahir, G. Nabi, M. Isa Khan, N. R. Khalid, S. S. A. Gillani, I. Sadaf, J. Inorg. Organomet. Polym. Mater. 29, 2133 (2019).

  22. 22.

    M.F. Abdel-Messih, M.A. Ahmed, A.S. El-Sayed, J. Photochem. Photobiol. A 260, 1 (2013)

  23. 23.

    D. Chandra, N. Mukherjee, A. Mondal, A. Bhaumik, J. Phys. Chem. C 112, 8668 (2008)

  24. 24.

    A. Farhadi, M.R. Mohammadi, M. Ghorbani, J. Photochem. Photobiol. A 338, 171 (2017)

  25. 25.

    N.P. Tangale, P.S. Niphadkar, V. Samuel, S.S. Deshpande, P.N. Joshi, S.V. Awate, Mater. Lett. 171, 50 (2016)

  26. 26.

    A. Marzec, M. Radecka, W. Maziarz, A. Kusior, Z. Pedzich, J. Eur. Ceram. Soc. 36, 2981 (2016)

  27. 27.

    A. Kusior, J. Klich-Kafel, A. Trenczek-Zajac, K. Swierczek, M. Radecka, K. Zakrzewska, J. Eur. Ceram. Soc. 33, 2285 (2013)

  28. 28.

    B.K. Kaleji, R. Sarraf-Mamoory, Mater. Res. Bull. 47, 362 (2012)

  29. 29.

    W. Zhang, X. Chen, Y. Han, S. Yao, Rare Met. 30, 229 (2011)

  30. 30.

    V.R. de Mendonça, W. Avansi, R. Arenal, C. Ribeiro, J. Colloid Interface Sci. 505, 454 (2017)

  31. 31.

    F. Du, X. Zuo, Q. Yang, B. Yang, G. Li, Z. Ding, M. Wu, Y. Ma, S. Jin, K. Zhu, Ceram. Int. 42, 12778 (2016)

  32. 32.

    H.A.J.L. Mourão, W.A. Junior, C. Ribeiro, Mater. Chem. Phys. 135, 524 (2012)

  33. 33.

    M. Hirano, H. Dozono, T. Kono, Mater. Res. Bull. 46, 1384 (2011)

  34. 34.

    E. Arpaç, F. Sayilkan, M. Asiltürk, P. Tatar, N. Kiraz, H. Sayilkan, J. Hazard. Mater. 140, 69 (2007)

  35. 35.

    A. Marzec, P. Zbigniew, W. Maziarz, Process. Appl. Ceram. 10, 249 (2016)

  36. 36.

    S.M. Hassan, A.I. Ahmed, M.A. Mannaa, Colloids Surf. A Physicochem. Eng. Asp. 577, 147 (2019)

  37. 37.

    H. Li, M. Vrinat, G. Berhault, D. Li, H. Nie, P. Afanasiev, Mater. Res. Bull. 48, 3374 (2013)

  38. 38.

    R.M. De Almeida, F.T.C. Souza, M.A.C. Júnior, N.J.A. Albuquerque, S.M.P. Meneghetti, M.R. Meneghetti, Catal. Commun. 46, 179 (2014)

  39. 39.

    Y. Jiao, H. Zhang, S. Li, C. Guo, P. Yao, J. Wang, Fuel 233, 724 (2018)

  40. 40.

    M. Aguilar-Romero, R. Camposeco, S. Castillo, J. Marín, V. Rodríguez-González, L.A. García-Serrano, I. Mejía-Centeno, Fuel 198, 123 (2017)

  41. 41.

    A.S. Kutuzova, T.A. Dontsova, Appl. Nanosci. 9, 873 (2019)

  42. 42.

    A. Kutuzova, T. Dontsova, in Proc. 2017 IEEE 7th Int. Conf. Nanomater. Appl. Prop. N. 2017 (Zatoka, 2017), pp. 286–290.

  43. 43.

    P. Scherrer, Göttinger Nachrichten Gesell. 2, 98 (1918)

  44. 44.

    S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309 (1938)

  45. 45.

    T.A. Dontsova, E.I. Yanushevskaya, S.V. Nahirniak, O.V. Makarchuk, A.I. Ivanets, M.Y. Roshchina, A.S. Kutuzova, L.M. Kulikov, J. Nanomater. 2018, 1 (2018)

  46. 46.

    M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87, 1051 (2015)

  47. 47.

    A. Grosman, C. Ortega, Langmuir Am. Chem. Soc. 24, 3977 (2008)

  48. 48.

    T. Horikawa, D.D. Do, D. Nicholson, Adv. Colloid Interface Sci. 169, 40 (2011)

  49. 49.

    D. Toloman, O. Pana, M. Stefan, A. Popa, C. Leostean, S. Macavei, D. Silipas, I. Perhaita, M.D. Lazar, L. Barbu-Tudoran, J. Colloid Interface Sci. 542, 296 (2019)

Download references

Acknowledgements

The authors would like to acknowledge V.E. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine and especially Dr. Viktor Strelchuk and PhD Iurii M. Nasieka for providing Raman spectroscopy.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by AK, TD and WK. The first draft of the manuscript was written by AK and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Correspondence to Anastasiya Kutuzova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kutuzova, A., Dontsova, T. & Kwapinski, W. TiO2–SnO2 Nanocomposites: Effect of Acid–Base and Structural-Adsorption Properties on Photocatalytic Performance. J Inorg Organomet Polym (2020). https://doi.org/10.1007/s10904-020-01467-z

Download citation

Keywords

  • Nanocomposites TiO2–SnO2
  • Acidic-basic sites
  • Hammett method
  • Sorption
  • Photocatalysis