Advertisement

Synthesis, Characterization and Thermal Studies of a Nanosized 1D l-Arginine/Copper(II) Coordination Polymer by Sonochemical Method: A New Precursor for Preparation of Copper(II) Oxide Nanoparticles

  • Mina Alikhani
  • Mohammad HakimiEmail author
  • Keyvan Moeini
  • Vaclav Eigner
  • Michal Dusek
Article
  • 15 Downloads

Abstract

In the present work, 1D-copper(II) coordination polymer, {[Cu(μ-l-Arg)2(H2O)]SO4}n (1); (l-Arg: l-Arginine), was synthesized and identified by elemental analysis, FT-IR spectroscopy, molar conductivity, thermal gravimetric analysis (TGA), differential thermal analysis (DTA) and single-crystal X-ray diffraction. The compound 1 was also prepared by a sonochemical process in the form of nanoparticles. The particle size and morphology of the synthesized nanoparticles were investigated by powder X-ray diffraction (PXRD) and field emission scanning electron microscopy (FE-SEM). In the crystal structure of 1, the copper atoms are coordinated in a distorted octahedral geometry. In this geometry, the cis-equatorial plane (N2O2) is constructed by two NO-donor l-Arg ligands. The remaining coordination sites in the apical positions are occupied by an oxygen atom of the neighboring l-Arg and the oxygen atom of a water molecule. In 1, infinite one-dimensional (1D) networks are constructed through carboxylate bridges. Finally, CuO nanoparticles were produced by thermal decomposition of the sonochemically prepared nanoparticles of 1, and characterized by FT-IR, XRD, FE-SEM and EDS.

Keywords

Coordination polymer Copper(II) l-Arginine Crystal structure Thermal decomposition Nanoparticles 

Notes

Acknowledgements

We are grateful to the Payame Noor University of Mashhad for support of this work. The crystallographic part was supported by the project 18-10504S of the Czech Science Foundation using instruments of the ASTRA laboratory established within the Operation program Prague Competitiveness—Project CZ.2.16/3.1.00/24510

References

  1. 1.
    J.-R. Li, R.J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 38(5), 1477–1504 (2009)CrossRefGoogle Scholar
  2. 2.
    K.-T. Wong, J.-M. Lehn, S.-M. Peng, G.-H. Lee, Chem. Commun. (2000).  https://doi.org/10.1039/B005679K CrossRefGoogle Scholar
  3. 3.
    K.-L. Zhang, N. Qiao, H.-Y. Gao, F. Zhou, M. Zhang, Polyhedron 26(12), 2461–2469 (2007)CrossRefGoogle Scholar
  4. 4.
    A. Caneschi, D. Gatteschi, N. Lalioti, C. Sangregorio, R. Sessoli, G. Venturi, A. Vindigni, A. Rettori, M.G. Pini, M.A. Novak, Angew. Chem. Int. Ed. Engl. 40(9), 1760–1763 (2001)CrossRefGoogle Scholar
  5. 5.
    S. Zang, Y. Su, Y. Li, Z. Ni, Q. Meng, Inorg. Chem. 45(1), 174–180 (2006)CrossRefGoogle Scholar
  6. 6.
    M. Aoyagi, K. Biradha, M. Fujita, J. Am. Chem. Soc. 121(32), 7457–7458 (1999)CrossRefGoogle Scholar
  7. 7.
    J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Chem. Soc. Rev. 38(5), 1450–1459 (2009)CrossRefGoogle Scholar
  8. 8.
    N. Fayaz Bakhsh, M.J. Soltanian Fard, P. Hayati, A. Masoudiasl, J. Janczak, J. Mol. Struct. 1200, 127020 (2020)CrossRefGoogle Scholar
  9. 9.
    B.-Y. Lou, F.-L. Jiang, B.-L. Wu, D.-Q. Yuan, M.-C. Hong, Cryst. Growth Des. 6(4), 989–993 (2006)CrossRefGoogle Scholar
  10. 10.
    D. Inci, R. Aydin, T. Sevgi, Y. Zorlu, E. Demirkan, J. Coord. Chem. 70(3), 512–543 (2017)CrossRefGoogle Scholar
  11. 11.
    A. Wojciechowska, A. Gągor, W. Zierkiewicz, A. Jarząb, A. Dylong, M. Duczmal, RSC Adv. 5(46), 36295–36306 (2015)CrossRefGoogle Scholar
  12. 12.
    X. Yang, J.D. Ranford, J.J. Vittal, Cryst. Growth Des. 4(4), 781–788 (2004)CrossRefGoogle Scholar
  13. 13.
    F. Shahangi Shirazi, K. Akhbari, Ultrason. Sonochem. 31, 51–61 (2016)CrossRefGoogle Scholar
  14. 14.
    A. Morsali, H.H. Monfared, A. Morsali, C. Janiak, Ultrason. Sonochem. 23, 208–211 (2015)CrossRefGoogle Scholar
  15. 15.
    A. Sonthila, P. Ruankham, S. Choopun, D. Wongratanaphisan, S. Phadungdhitidhada, A. Gardchareon, J. Phys. Conf. Ser. 901, 012097 (2017)CrossRefGoogle Scholar
  16. 16.
    G. Borkow, R.C. Zatcoff, J. Gabbay, Med. Hypotheses 73(6), 883–886 (2009)CrossRefGoogle Scholar
  17. 17.
    M.P. Rao, J.J. Wu, A.M. Asiri, S. Anandan, Water Sci. Technol. 75(6), 1421–1430 (2017)CrossRefGoogle Scholar
  18. 18.
    K. Borgohain, J. Singh, M.R. Rao, T. Shripathi, S. Mahamuni, Phys. Rev. B 61(16), 11093 (2000)CrossRefGoogle Scholar
  19. 19.
    A.A. Eliseev, A.V. Lukashin, A.A. Vertegel, L.I. Heifets, A.I. Zhirov, Y.D. Tretyakov, Mater. Res. Innov. 3(5), 308–312 (2000)CrossRefGoogle Scholar
  20. 20.
    R.V. Kumar, Y. Diamant, A. Gedanken, Chem. Mater. 12(8), 2301–2305 (2000)CrossRefGoogle Scholar
  21. 21.
    M. Salavati-Niasari, F. Davar, Mater. Lett. 63(3–4), 441–443 (2009)CrossRefGoogle Scholar
  22. 22.
    F.H. Allen, Acta Cryst. B 58(3–1), 380–388 (2002)CrossRefGoogle Scholar
  23. 23.
    L. Palatinus, G. Chapuis, J. Appl. Crystallogr. 40(4), 786–790 (2007)CrossRefGoogle Scholar
  24. 24.
    V. Petříček, M. Dušek, L. Palatinus Z, Kristallogr. Cryst. Mater. 229(5), 345–352 (2014)Google Scholar
  25. 25.
    J. Rohlíček, M. Hušák, MCE2005—a new version of a program for fast interactive visualization of electron and similar density maps optimized for small molecules. J. Appl. Cryst. 40(3), 600–601 (2007)CrossRefGoogle Scholar
  26. 26.
    G. Bergerhoff, M. Berndt, K. Brandenburg, J. Res. Natl. Inst. Stand. Technol. 101(3), 221 (1996)CrossRefGoogle Scholar
  27. 27.
    M. Hakimi, M. Alikhani, M. Mashreghi, N. Feizi, H. Raesi, Y. Mirzaie, V. Eigner, M. Dusek, J. Mol. Struct. 1186, 355–361 (2019)CrossRefGoogle Scholar
  28. 28.
    H. Hemissi, M. Nasri, S. Abid, S. Al-Deyab, E. Dhahri, E. Hlil, M. Rzaigui, J. Solid State Chem. 196, 489–497 (2012)CrossRefGoogle Scholar
  29. 29.
    R. Mrozek, Z. Rzaczyńska, M. Sikorska-Iwan, M. Jaroniec, T. Głowiak, Polyhedron 18(17), 2321–2326 (1999)CrossRefGoogle Scholar
  30. 30.
    D.A. Köse, E. Toprak, E. Avcı, G.A. Avcı, O. Şahin, O. Büyükgüngör, J. Chin. Chem. Soc. 61(8), 881–890 (2014)CrossRefGoogle Scholar
  31. 31.
    K. Nakamoto, K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 6th edn. (Wiley, New Jersey, 2009)Google Scholar
  32. 32.
    R.W. Cheary, A.A. Coelho, J.P. Cline, Fundamental parameters line profile fitting in laboratory diffractometers. J. Res. Natl. Inst. Stand. Technol. 109(1), 1–25 (2004)CrossRefGoogle Scholar
  33. 33.
    M. Arfan, D.N. Siddiqui, T. Shahid, Z. Iqbal, Y. Majeed, I. Akram, R. Bagheri, Z. Song, A. Zeb, Result. Phys. 13, 102187 (2019)CrossRefGoogle Scholar
  34. 34.
    X.-X. Cheng, S. Hojaghani, M.-L. Hu, M.H. Sadr, A. Morsali, Ultrason. Sonochem. 37, 614–622 (2017)CrossRefGoogle Scholar
  35. 35.
    M. Nafees, M. Ikram, S. Ali, Dig. J. Nanomater. Biostruct. 10(2), 635–641 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Mina Alikhani
    • 1
  • Mohammad Hakimi
    • 1
    Email author
  • Keyvan Moeini
    • 1
  • Vaclav Eigner
    • 2
  • Michal Dusek
    • 2
  1. 1.Department of ChemistryPayame Noor UniversityTehranIslamic Republic of Iran
  2. 2.Institute of Physic of the Czech Academy of SciencesPragueCzech Republic

Personalised recommendations