The Effect of Various Capping Agents on Surface Modifications of CdO NPs and the Investigation of Photocatalytic Performance, Antibacterial and Anti-biofilm Activities

  • B. Janani
  • G. Gayathri
  • Asad Syed
  • Lija L. Raju
  • Najat Marraiki
  • Abdallah M. Elgorban
  • Ajith M. Thomas
  • S. Sudheer KhanEmail author


CdO nanoparticles (NPs) were prepared through chemical co-precipitation method. The NPs were modified using different organic materials including starch, methyl cellulose, polyvinylpyrrolidone, ethylene glycol, tween 20, polyvinyl alcohol and gelatin. The NPs were characterized by UV–Vis spectrophotometer, TEM, EDX, XRD, FT-IR, particle size analyzer and zeta sizer. The TEM analysis showed that the NPs were hexagonal in shape. The NP’s photocatalytic activity was evaluated and it was slightly influenced by surface modification of NPs. FT-IR analysis confirmed that the particles were not deformed after photocatalysis. The half-life period of methylene blue (MB) dye degradation by CdO NPs was found to be higher than capped CdO NPs. The MB dye reduction rate was decreased with the order of CdO > CdO–T20 > CdO–PVA > CdO–EG > CdO–MC > CdO–S > CdO–PVP > CdO–G. The capped particles showed excellent photostability and reusability. Capped CdO NPs exhibited excellent anti-biofilm and antibacterial activities against Staphylococcus aureus and Pseudomonas aeruginosa of which CdO–T20 showed highest toxicity. The uncapped particles exhibited least photostability and the capping agents extend their stability against photo corrosion and increase the biocompatibility. The present approach can be used to prepare variety of nanohybrid particles depend on industrial applications.


CdO nanoparticles Organic coatings Photocatalytic effect Antibacterial activity Anti-biofilm activity 



Authors sincerely thank the management of Bannari Amman Institute of Technology, Tamil Nadu for providing the necessary facilities and financial support to carry out this research work. The authors extend their appreciation to The Researchers supporting project number (RSP-2019/56) King Saud University, Riyadh, Saudi Arabia.

Supplementary material

10904_2020_1440_MOESM1_ESM.docx (1.1 mb)
Supplementary file1 (DOCX 1098 kb)


  1. 1.
    G. Hota, S. Jain, K.C. Khilar, Colloid Surf. A 232, 119–127 (2004)CrossRefGoogle Scholar
  2. 2.
    G. Hota, S.B. Idage, K.C. Khilar, Colloid Surf. A 293, 5–12 (2007)CrossRefGoogle Scholar
  3. 3.
    P. Kumari, M. Alam, A. Siddiqi, Sustain Mater. Technol. 22, 128 (2019)Google Scholar
  4. 4.
    Y. Yang, Q. Ding, D. Wen, M. Yang, Y. Wang, N. Liu, X. Zhang, Environ. Sci. Pollut. Res. 25, 27503–27513 (2018)CrossRefGoogle Scholar
  5. 5.
    Y. Yang, D. Wen, Q. Ding, Y. Wang, N. Liu, Y. Zhao, X. Zhang, Desal Water Treat. 88, 257–267 (2017)CrossRefGoogle Scholar
  6. 6.
    X. Zhang, Y. Yang, W. Huang, Y. Yang, Y. Wang, C. He, N. Liu, M. Wu, L. Tang, Mater. Res. Bull. 99, 349–358 (2018)CrossRefGoogle Scholar
  7. 7.
    X. Zhang, Y. Wang, F. Hou, H. Li, Y. Yang, X. Zhang, Y. Yang, Y. Wang, Appl. Surf. Sci. 391, 476–483 (2017)CrossRefGoogle Scholar
  8. 8.
    X. Zou, C. Yuan, Y. Dong, H. Ge, J. Ke, Y. Cui, Chem. Eng. J. 379, 122380 (2019)CrossRefGoogle Scholar
  9. 9.
    Y. Wang, Y. Wang, L. Yu, J. Wang, B. Du, X. Zhang, Chem. Eng. J. 368, 115–128 (2019)CrossRefGoogle Scholar
  10. 10.
    X. Zhang, X. Zhang, L. Song, F. Hou, Y. Yang, Y. Wang, N. Liu, Int. J. Hydrog. Energy. 43, 18279–18288 (2018)CrossRefGoogle Scholar
  11. 11.
    R. Lafi, L. Gzara, R.H. Lajimi, A. Hafiane, Chem. Eng. Process 132, 105–113 (2018)CrossRefGoogle Scholar
  12. 12.
    X. Zhang, X. Lv, X. Shi, Y. Yang, Y. Yang, J. Colloid Interf. Sci. 539, 152–160 (2019)CrossRefGoogle Scholar
  13. 13.
    X. Zhang, Y. Yang, X. Lv, Y. Wang, N. Liu, D. Chen, L. Cui, J. Hazard, Mat. 366, 140–150 (2019)Google Scholar
  14. 14.
    M.R. Hoffman, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)CrossRefGoogle Scholar
  15. 15.
    A. Mills, S.L. Hunte, J. Photochem. Photobiol. A 108, 1 (1997)CrossRefGoogle Scholar
  16. 16.
    X.Z. Li, F.B. Li, Environ. Sci. Technol. 35, 2381 (2001)CrossRefGoogle Scholar
  17. 17.
    D.S. Muggli, L. Ding, M.J. Odland, Catal. Lett. 78, 23 (2002)CrossRefGoogle Scholar
  18. 18.
    R. Leary, A. Westwood, Carbon 49, 741–772 (2011)CrossRefGoogle Scholar
  19. 19.
    T. Janin, V. Goetz, S. Brosillon, G. Plantard, Sol. Energy 87, 127–135 (2013)CrossRefGoogle Scholar
  20. 20.
    S. Sudheer Khan, A. Mukherjee, N. Chandrasekaran, Colloid. Surf. A 381, 99–105 (2011)CrossRefGoogle Scholar
  21. 21.
    A. Ravindran, A. Singh, A.M. Raichur, N. Chandrasekaran, A. Mukherjee, Colloid. Surf. B 76, 32–37 (2010)CrossRefGoogle Scholar
  22. 22.
    H. Jeong, C. Kim, S. Yang, H. Lee, J. Catal. 344, 609–615 (2016)CrossRefGoogle Scholar
  23. 23.
    X. Zhang, F. Hou, H. Li, Y. Yang, Y. Wang, N. Liu, Y. Yang, Micropor. Mesopor. Mat. 259, 211–219 (2018)CrossRefGoogle Scholar
  24. 24.
    X. Zhang, Y. Yang, L. Song, Y. Wang, C. He, Z. Wang, L. Cui, Mol. Catal. 447, 80–89 (2018)CrossRefGoogle Scholar
  25. 25.
    Y.B. Kim, D. Cho, W.H. Park, J. Appl. Polym. Sci. 116, 449–454 (2010)CrossRefGoogle Scholar
  26. 26.
    F. Karimi, H.R. Rajabi, L. Kavoshi, Ultrason. Sonochem. 57, 139–146 (2019)CrossRefGoogle Scholar
  27. 27.
    N. Soltani, E. Saion, W.M.M. Yunus, M. Navasery, G. Bahmanrokh, M. Erfani, M.R. Zare, E. Gharibshahi, Sol. Energ. 97, 147–154 (2013)CrossRefGoogle Scholar
  28. 28.
    N. Soltani, E. Saion, W.M.M. Yunus, M. Erfani, M. Navasery, G. Bahmanrokh, K. Rezaee, Appl. Surf. Sci. 290, 440–447 (2014)CrossRefGoogle Scholar
  29. 29.
    X. Li, C. Hu, X. Wang, Y. Xi, Appl. Surf. Sci. 258, 4370–4376 (2012)CrossRefGoogle Scholar
  30. 30.
    Z.D. Meng, T. Ghosh, L. Zhu, J.G. Choi, C.Y. Park, W.C. Oh, J. Mater. Chem. 22, 16127–16135 (2012)CrossRefGoogle Scholar
  31. 31.
    V. Taghvaei, A. Habibi-Yangjeh, M. Behboudnia, Physica E 42, 1973–1978 (2010)CrossRefGoogle Scholar
  32. 32.
    Y. Hu, X. Gao, L. Yu, Y. Wang, J. Ning, S. Xu, X.W. Lou, Angew. Chem. Int. Ed. 52, 5636–5639 (2013)CrossRefGoogle Scholar
  33. 33.
    P. Chandran, S. Nehta, S.S. Khan, J. Photochem. Photobiol. B 138, 155–159 (2014)CrossRefGoogle Scholar
  34. 34.
    K. Akhil, J. Jayakumar, G. Gayathri, S. Sudheer Khan, J. Photochem. Photobiol. B 160, 32–42 (2016)CrossRefGoogle Scholar
  35. 35.
    S. Balamurugan, A.R. Balu, K. Usharani, M. Suganya, S. Anithaa, D. Prabha, S. Ilangovan, Pac. Sci. Rev A 18, 228–232 (2016)Google Scholar
  36. 36.
    A. Dhanalakshmi, A. Palanimurugan, B. Natarajan, Carbohydr. Polym. 168, 191–200 (2017)CrossRefGoogle Scholar
  37. 37.
    R. Hariharan, S. Senthilkumar, A. Suganthi, M. Rajarajan, J. Photochem. Photobiol. B 116, 56–65 (2012)CrossRefGoogle Scholar
  38. 38.
    K. Anandhan, S. Harish, R. Thilak Kumar, Appl Surface Sci. (2019). CrossRefGoogle Scholar
  39. 39.
    G. Applerot, J. Lellouche, N. Perkas, Y. Nitzan, A. Gedanken, E. Banin, RSC Adv. 2, 2314–2321 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Nanobiotechnology Laboratory, Department of BiotechnologyBannari Amman Institute of TechnologySathyamangalamIndia
  2. 2.Department of Chemistry and Biosciences, Srinivasa Ramanujan CentreSASTRA UniversityKumbakonamIndia
  3. 3.Department of Botany and Microbiology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  4. 4.Department of ZoologyMar Ivanios CollegeNalanchiraIndia
  5. 5.Centre of Excellence in Biotechnology ResearchKing Saud UniversityRiyadhSaudi Arabia
  6. 6.Department of Botany and BiotechnologySt Xavier’s CollegeThumbaIndia

Personalised recommendations