Advertisement

Synthesis of a Conductive Glassy System Based on Inorganic Oxides and Carbon Materials and Their Possible Electroanalytical Application

  • Gastón Darío PieriniEmail author
  • Pablo Emanuel di Pratula
  • Ana Laura Ochoa
  • María Eugenia Centurión
  • Marisa Alejandra Frechero
  • María Susana Di NezioEmail author
Article
  • 11 Downloads

Abstract

New materials based on V2O5, TeO2 and a combination of graphite, graphene oxide and multiwalled carbon nanotubes were developed and tested as potential electrochemical sensors. A mixture design with three components in combination with multi-response assays based on the desirability function was used as multivariate optimization for the system composition. The optimal sensor contains graphene oxide and multiwalled carbon in approximately equal amounts. The new sensors characterizations were performed with X-ray diffraction, differential scanning calorimetry, impedance spectroscopy and cyclic voltammetry. The main advantage of this electrodes are does not requires surface activation and exhibited a potential electroanalytical performance with different targeted analytes such as ascorbic acid, aspartame and lead.

Keywords

Conductive glassy system Graphene oxid Multiwalled carbon nanotubes Electrochemical sensor 

Notes

Acknowledgements

G.D.P., P.E.dP. and A.L.O. are fellowships and M.A.F is Research Fellow of the CONICET, Argentina. The authors acknowledge the financial support from SGCyT—Universidad Nacional del Sur, Argentina (PGI 24/Q077) and INQUISUR-CONICET.

Supplementary material

10904_2019_1434_MOESM1_ESM.docx (130 kb)
Supplementary file1 (DOCX 130 kb)

References

  1. 1.
    H. Beitollahi, M. Safaei, S. Tajik, Voltammetric and amperometric sensors for determination of epinephrine: A short review (2013–2017). J Electrochem Sci Eng 9(1), 27–43 (2019).  https://doi.org/10.5599/jese.569 CrossRefGoogle Scholar
  2. 2.
    H. Beitollahi, M. Safaei, M.R. Shishehbore, S. Tajik, Application of Fe3O4@SiO2/GO nanocomposite for sensitive and selective electrochemical sensing of tryptophan. J Electrochem Sci Eng 9(1), 45–53 (2019).  https://doi.org/10.5599/jese.576 CrossRefGoogle Scholar
  3. 3.
    S. Tajik, H. Beitollahi, P. Biparva, Methyldopa electrochemical sensor based on a glassy carbon electrode modified with Cu/TiO2 nanocomposite. J Serb Chem Soc 83(7–8), 863–874 (2018).  https://doi.org/10.2298/JSC170930024T CrossRefGoogle Scholar
  4. 4.
    M. Safaei, H. Beitollahi, M.R. Shishehbore, S. Tajik, R. Hosseinzadeh, Electrocatalytic determination of captopril using a carbon paste electrode modified with N-(ferrocenyl-methylidene)fluorene-2-amine and graphene/zno nanocomposite. J Serb Chem Soc 84(2), 175–185 (2019).  https://doi.org/10.2298/JSC180414095S CrossRefGoogle Scholar
  5. 5.
    H. Beitollahi, H. Karimi-Maleh, H. Khabazzadeh, Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-Oxo-3-phenyl-3,4-dihydroquinazolinyl)-N′-phenyl-hydrazinecarbothioamide. Anal Chem 80, 9848–9851 (2008).  https://doi.org/10.1186/s40486-018-0070-510.1021/ac801854j CrossRefPubMedGoogle Scholar
  6. 6.
    A. Hajializadeh, S. Jahani, S. Tajik, H. Beitollahi, Electrochemical behavior and determination of carbidopa on modified graphite screen printed electrode. Anal Bioanal Electrochem 10, 404–413 (2018)Google Scholar
  7. 7.
    S.Z. Mohammadi, H. Beitollahi, S. Tajik, Nonenzymatic coated screen-printed electrode for electrochemical determination of acetylcholine. Micro Nano Syst Lett 6, 9–15 (2018).  https://doi.org/10.1186/s40486-018-0070-5) CrossRefGoogle Scholar
  8. 8.
    H. Beitollahi, F. Movahedifar, S. Tajik, S. Jahani, A review on the effects of introducing CNTs in the modification process of electrochemical sensors. Electroanalysis 30, 1–10 (2018).  https://doi.org/10.1002/elan.201800370 CrossRefGoogle Scholar
  9. 9.
    L.A. Ketkova, M.F. Churbanov, Heterophase inclusions as a source of non-selective optical losses in high-purity chalcogenide and tellurite glasses for fiber optics. J Non-Cryst Solids 480, 18–22 (2018).  https://doi.org/10.1016/j.jnoncrysol.2017.09.018 CrossRefGoogle Scholar
  10. 10.
    A. Mansingh, V.K. Dhawan, AC conductivity of V2O5-TeO2 glasses. J Phys C: Solid State Phys 16, 1675 (1983).  https://doi.org/10.1088/0022-3719/16/9/012 CrossRefGoogle Scholar
  11. 11.
    V.K. Dhawan, A. Mansingh, M. Sayer, DC conduvtivity of V2O5TeO2 glasses. J Non-Cryst Solids 51, 87–103 (1982).  https://doi.org/10.1016/0022-3093(82)90190-9 CrossRefGoogle Scholar
  12. 12.
    G.D. Pierini, J.M. Presa, M.A. Frechero, M.E. Centurión, M.S. Di Nezio, An innovative micrometric granular graphite–glass system composite electrode “ready to use” in voltammetry techniques. Sens Actuators B 202, 433–439 (2014).  https://doi.org/10.1016/j.snb.2014.05.105 CrossRefGoogle Scholar
  13. 13.
    D.A.C. Brownson, G.C. Smith, C.E. Banks, Graphene oxide electrochemistry: the electrochemistry of graphene oxide modified electrodes reveals coverage dependent beneficial electrocatalysis. R Soc Open Sci 4, 171128 (2017).  https://doi.org/10.1098/rsos.171128 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    S.J. Rowley-Neale, E.P. Randviir, A.S.A. Dena, C.E. Banks, An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms. Appl Mater Today 10, 218–226 (2018).  https://doi.org/10.1016/j.apmt.2017.11.010 CrossRefGoogle Scholar
  15. 15.
    I. Taurino, S. Carrara, M. Giorcelli, A. Tagliaferro, G. Micheli, Comparison of two different carbon nanotube-based surfaces with respect to potassium ferricyanide electrochemistry. Surf Sci 606, 156–160 (2012).  https://doi.org/10.1016/j.susc.2011.09.001 CrossRefGoogle Scholar
  16. 16.
    E.N. Primo, F.A. Gutierrez, G.L. Luque, P.R. Dalmasso, A. Gasnier, Y. Jalit, M. Moreno, M.V. Bracamonte, M.E. Rubio, M.L. Pedano, M.C. Rodríguez, N.F. Ferreyra, M.D. Rubianes, S. Bollo, G.A. Rivas, Comparative study of the electrochemical behavior and analytical applications of (bio)sensing platforms based on the use of multi-walled carbon nanotubes dispersed in different polymers. Anal Chim Acta 805, 19–35 (2013).  https://doi.org/10.1016/j.aca.2013.10.039 CrossRefPubMedGoogle Scholar
  17. 17.
    S. Cheemalapati, S. Palanisamy, V. Mani, S.-M. Chen, Simultaneous electrochemical determination of dopamine and paracetamol on multiwalled carbon nanotubes/graphene oxide nanocomposite-modified glassy carbon electrode. Talanta 117, 297–304 (2013).  https://doi.org/10.1016/j.talanta.2013.08.041 CrossRefPubMedGoogle Scholar
  18. 18.
    S.M. Majd, A. Salimi, Ultrasensitive flexible FET-type aptasensor for CA 125 cancer marker detection based on carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film. Anal Chim Acta 1000, 273–282 (2018).  https://doi.org/10.1016/j.aca.2017.11.008 CrossRefGoogle Scholar
  19. 19.
    J. Chen, M. Zhao, Y. Li, J. Liang, S. Fan, S. Chen, Preparation of graphene oxide/multiwalled carbon nanotubes 3D flexible architecture for robust biosensing application. Ceram Int 41, 15241–15245 (2015).  https://doi.org/10.1016/j.ceramint.2015.07.050 CrossRefGoogle Scholar
  20. 20.
    A.M. Pisoschi, A. Pop, A.I. Serban, C. Fafaneata, Electrochemical methods for ascorbic acid determination. Electrochim Acta 121, 443–460 (2014).  https://doi.org/10.1016/j.electacta.2013.12.127 CrossRefGoogle Scholar
  21. 21.
    A.M. Granero, G.D. Pierini, S.N. Robledo, M.S. Di Nezio, H. Fernández, M.A. Zon, Simultaneous determination of ascorbic and uric acids and dopamine in human serum samples using three-way calibration with data from square wave voltammetry. Microchem J 129, 205–212 (2016).  https://doi.org/10.1016/j.microc.2016.07.004 CrossRefGoogle Scholar
  22. 22.
    G.D. Pierini, N.E. Llamas, W.D. Fragoso, S.G. Lemos, M.S. Di Nezio, M.E. Centurión, Simultaneous determination of acesulfame-K and aspartame using linear sweep voltammetry and multivariate calibration. Microchem J 106, 347–350 (2013).  https://doi.org/10.1016/j.microc.2012.09.006 CrossRefGoogle Scholar
  23. 23.
    G.D. Pierini, M.F. Pistonesi, M.S. Di Nezio, M.E. Centurión, A pencil-lead bismuth film electrode and chemometric tools for simultaneous determination of heavy metals in propolis samples. Microchem J 125, 266–272 (2016).  https://doi.org/10.1016/j.microc.2015.11.038 CrossRefGoogle Scholar
  24. 24.
    G.D. Pierini, A.M. Granero, M.S. Di Nezio, M.E. Centurión, M.A. Zon, H. Fernández, Development of an electroanalytical method for the determination of lead in Argentina raw propolis based on bismuth electrodes. Microchem J 106, 102–106 (2013).  https://doi.org/10.1016/j.microc.2012.05.015 CrossRefGoogle Scholar
  25. 25.
    X. Ma, Y. Li, W. Wang, Q. Ji, Y. Xia, Temperature-sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels by in situ polymerization with improved swelling capability and mechanical behavior. Eur Polymer J 49, 389–396 (2013).  https://doi.org/10.1016/j.eurpolymj.2012.10.034 CrossRefGoogle Scholar
  26. 26.
    A. Aqel, K.M.M.A. El-Nour, R.A.A. Ammar, A. Al-Warthan, Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arab J Chem 5, 1–23 (2012).  https://doi.org/10.1016/j.arabjc.2010.08.022 CrossRefGoogle Scholar
  27. 27.
    M.A. Salam, R. Burk, Synthesis and characterization of multi-walled carbon nanotubes modified with octadecylamine and polyethylene glycol. Arab J Chem 10, S921–S927 (2017).  https://doi.org/10.1016/j.arabjc.2012.12.028 CrossRefGoogle Scholar
  28. 28.
    H. Wang, B.A. Kakade, T. Tamaki, T. Yamaguchi, Synthesis of 3D graphite oxide-exfoliated carbon nanotube carbon composite and its application as catalyst support for fuel cells. J Power Sources 260, 338–348 (2014).  https://doi.org/10.1016/j.jpowsour.2014.03.014 CrossRefGoogle Scholar
  29. 29.
    P. Tamilarasan, S. Ramaprabhu, Ionic liquid-functionalized partially exfoliated multiwalled carbon nanotubes for high-performance supercapacitors. J Mater Chem A 2, 14054–14063 (2014).  https://doi.org/10.1039/C4TA02718C CrossRefGoogle Scholar
  30. 30.
    E.C. Cardillo, S. Terny, M.A. Frechero, Enthalpy relaxation of the glassy matrix in vanadium–molybdenum–tellurite oxide glasses. Thermochim Acta 566, 10–14 (2013).  https://doi.org/10.1016/j.tca.2013.05.010 CrossRefGoogle Scholar
  31. 31.
    C.T. Moynihan, S.K. Lee, M. Tatsumisago, T. Minami, Estimation of activation energies for structural relaxation and viscous flow from DTA and DSC experiments. Thermochim Acta 280, 153–162 (1996).  https://doi.org/10.1016/0040-6031(95)02781-5 CrossRefGoogle Scholar
  32. 32.
    P.E. di Prátula, S. Terny, E.C. Cardillo, M.A. Frechero, The influence of transition metal oxides type M+/M++ on the vanadium–tellurite glasses electrical behavior. Solid State Sci 49, 83–89 (2015).  https://doi.org/10.1016/j.solidstatesciences.2015.10.001 CrossRefGoogle Scholar
  33. 33.
    P.E. di Prátula, S. Terny, M.E. Sola, M.A. Frechero, Ionic conductivity enhancement achieved by the incorporation of ZnO in a lithium tellurite glass. J Non-Cryst Solids 461, 18–23 (2017).  https://doi.org/10.1016/j.jnoncrysol.2017.01.039 CrossRefGoogle Scholar
  34. 34.
    S. Terny, M.A. De la Rubia, J. De Frutos, M.A. Frechero, A new transition metal-tellurite glass family: electrical and structural properties. J Non-Cryst Solids 433, 68–74 (2016).  https://doi.org/10.1016/j.jnoncrysol.2015.11.030 CrossRefGoogle Scholar
  35. 35.
    C.S. Terny, E.C. Cardillo, P.E. Prátula, M.A. Villar, M.A. Frechero, Electrical response of bivalent modifier cations into a vanadium–tellurite glassy matrix. J Non-Cryst Solids 387, 107–111 (2014).  https://doi.org/10.1016/j.jnoncrysol.2013.12.036 CrossRefGoogle Scholar
  36. 36.
    I. Lavagnini, R. Antiochia, F. Magno, An extended method for the practical evaluation of the standard rate constant from cyclic voltammetric data. Electroanalysis 16, 505–506 (2004).  https://doi.org/10.1002/elan.200302851 CrossRefGoogle Scholar
  37. 37.
    C.W. Foster, A.P. de Souza, J.P. Metters, M. Bertotti, C.E. Banks, Metallic modified (bismuth, antimony, tin and combinations thereof) film carbon electrodes. Analyst 140, 7598–7612 (2015).  https://doi.org/10.1039/C5AN01692D CrossRefPubMedGoogle Scholar
  38. 38.
    G. Derringer, R. Suich, Simultaneous optimization of several response variables. J Qual Technol 4, 5 (1980).  https://doi.org/10.1080/00224065.1980.11980968 CrossRefGoogle Scholar
  39. 39.
    J. Li, X. Wang, H. Duan, Y. Wang, C. Luo, Ultra-sensitive determination of epinephrine based on TiO2-Au nanoclusters supported on reduced graphene oxide and carbon nanotube hybrid nanocomposites. Mater Sci Eng, C 64, 391–398 (2016).  https://doi.org/10.1016/j.msec.2016.04.003 CrossRefGoogle Scholar
  40. 40.
    X. Zhu, K. Zhang, N. Lu, X. Yuan, Simultaneous determination of 2,4,6-trichlorophenol and pentachlorophenol based on poly(Rhodamine B)/graphene oxide/multiwalled carbon nanotubes composite film modified electrode. Appl Surf Sci 361, 72–79 (2016).  https://doi.org/10.1016/j.apsusc.2015.11.154 CrossRefGoogle Scholar
  41. 41.
    T.A. Silva, H. Zanin, E. Saito, R.A. Medeiros, F.C. Vicentini, E.J. Corat, O. Fatibello-Filho, Electrochemical behaviour of vertically aligned carbon nanotubes and graphene oxide nanocomposite as electrode material. Electrochim Acta 119, 114–119 (2014).  https://doi.org/10.1016/j.electacta.2013.12.024 CrossRefGoogle Scholar
  42. 42.
    X. Zhu, L. Lu, X. Duan, K. Zhang, J. Xu, D. Hu, H. Sun, L. Dong, Y. Gao, Y. Wu, Efficient synthesis of graphene–multiwalled carbon nanotubes nanocomposite and its application in electrochemical sensing of diethylstilbestrol. J Electroanal Chem 731, 84–92 (2014).  https://doi.org/10.1016/j.jelechem.2014.08.009 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Gastón Darío Pierini
    • 1
    Email author
  • Pablo Emanuel di Pratula
    • 1
  • Ana Laura Ochoa
    • 2
  • María Eugenia Centurión
    • 1
  • Marisa Alejandra Frechero
    • 1
  • María Susana Di Nezio
    • 1
    Email author
  1. 1.Departamento de QuímicaINQUISUR (UNS-CONICET), Universidad Nacional del SurBuenos AiresArgentina
  2. 2.Departamento de Química, Facultad de Ciencias ExactasFísico-Químicas y Naturales, Universidad Nacional de Río CuartoRío CuartoArgentina

Personalised recommendations