Advertisement

Radiation Synthesis of Magnesium Doped Nano Hydroxyapatite/(Acacia-Gelatin) Scaffold for Bone Tissue Regeneration: In Vitro Drug Release Study

  • Amany I. RaafatEmail author
  • H. Kamal
  • Hayat M. Sharada
  • Sawsan A. Abd elhalim
  • Randa D. Mohamed
Article
  • 22 Downloads

Abstract

Novel three-dimensional biodegradable porous nanocomposite bone scaffolds were fabricated using acacia gum and gelatin as the base polymer matrix and magnesium doped nano hydroxyapatite as cementing materials using gamma irradiation facility for crosslinking and sterilization processes. Mg-doped HAp nanoparticles were synthesized using wet chemical method. XRD studies verified the nano-scale size of the prepared HAp. In addition to Ca and P in the prepared n-HAp, the EDX analysis revealed the presence of Mg in the doped HAp samples. FTIR studies confirmed the existence of the characteristic functional groups of the scaffold constituents. The swelling behavior was found to be dependent on the quantity of embedded HAp nanoparticles. Nanocomposite scaffold porosity ranged from 26 to 39%, which increased with the inclusion of Mg ions. The developed scaffolds showed appropriate mechanical properties that enhanced by the existence of HAp nanoparticles. The incorporation of the Mg-doped HAp nanoparticles encourages the development of bone-like apatite layer. In vitro cytotoxicity assessment and blood compatibility demonstrated their biocompatibility. The developed scaffolds show promising antibacterial activity against Staphylococcus aureus and Escherichia coli. In vitro drug release study showed that the loaded Ketoprofen scaffolds were able to deliver the loaded drug sustainably.

Keywords

Radiation copolymerization Scaffold Bone regeneration Acacia gum Gelatin Mg-doped hydroxyapatite 

Notes

Acknowledgements

The authors express their deep gratitude to Dr. Asmaa Abu-Bakr Hassan, Associate Professor, Radiation Biology Department, National Center for Radiation Research and Technology, for performing cytotoxicity evaluation and her fruitful discussion. Also, deep gratitude to Dr. Eman Araby, Associate Professor, Radiation Microbiology Department, National Center for Radiation Research and Technology, for antibacterial assessment and her good interpretation and discussion.

References

  1. 1.
    H.C. Pape, A. Evans, P. Kobbe, J. Orthop. Trauma 24(Suppl 1), S36–S40 (2010)PubMedCrossRefGoogle Scholar
  2. 2.
    W. Wang, K.W.K. Yeung, Bioact. Mater. 2, 224–247 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    S. Caddeo, M. Boffito, S. Sartori, Front. Bioeng. Biotechnol. 5, 40 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    F. Zhao, D. Yao, R. Guo, L. Deng, A. Dong, J. Zhang, Nanomaterials 5, 2054–2130 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Z.-Y. Qiu, I.-S. Noh, S.-M. Zhang, Front. Mater. Sci. 7, 40–50 (2013)CrossRefGoogle Scholar
  6. 6.
    J.R. Ramya, K.T. Arul, P. Sathiamurthi, K. Asokan, S.N. Kalkura, Ceram. Int. 42, 11045–11054 (2016)CrossRefGoogle Scholar
  7. 7.
    V.K. Bommala, M.G. Krishna, C.T. Rao, J. Magnes, Alloys 7, 72–79 (2019)CrossRefGoogle Scholar
  8. 8.
    Y.L. Lam, S. Muniyandy, H. Kamaruddin, A. Mansor, P. Janarthanan, Radiat. Phys. Chem. 106, 213–222 (2015)CrossRefGoogle Scholar
  9. 9.
    D.J. Hickey, B. Ercan, L. Sun, T.J. Webster, Acta Biomater. 14, 175–184 (2015)PubMedCrossRefGoogle Scholar
  10. 10.
    C.Y. Tan, A. Yaghoubi, S. Ramesh, S. Adzila, J. Purbolaksono, M.A. Hassan, M.G. Kutty, Ceram. Int. 39, 8979–8983 (2013)CrossRefGoogle Scholar
  11. 11.
    S. Shanmugam, B. Gopal, Ceram. Int. 40, 15655–15662 (2014)CrossRefGoogle Scholar
  12. 12.
    A. Oyane, H.-M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, T. Nakamura, J. Biomed. Mater. Res. Part A 65A, 188–195 (2003)CrossRefGoogle Scholar
  13. 13.
    T. Kokubo, H. Takadama, Biomaterials 27, 2907–2915 (2006)PubMedCrossRefGoogle Scholar
  14. 14.
    S.R.K. Meka, V. Agarwal, K. Chatterjee, Mater. Sci. Eng. C 94, 565–579 (2019)CrossRefGoogle Scholar
  15. 15.
    N. Ninan, Y. Grohens, A. Elain, N. Kalarikkal, S. Thomas, Eur. Polym. J. 49, 2433–2445 (2013)CrossRefGoogle Scholar
  16. 16.
    A. Koç Demir, A.E. Elçin, Y.M. Elçin, Mater. Sci. Eng. C 89, 8–14 (2018)CrossRefGoogle Scholar
  17. 17.
    W.-C. Lin, D.-G. Yu, M.-C. Yang, Coll. Surf. B: Biointerfaces 47, 43–49 (2006)CrossRefGoogle Scholar
  18. 18.
    C. Gao, S. Ito, A. Obata, T. Mizuno, J.R. Jones, T. Kasuga, Polymer 91, 106–117 (2016)CrossRefGoogle Scholar
  19. 19.
    M. Abdellahi, A. Najafinezhad, H. Ghayour, S. Saber-Samandari, A. Khandan, J. Mech. Behav. Biomed. Mater. 72, 171–181 (2017)PubMedCrossRefGoogle Scholar
  20. 20.
    B. Gayathri, N. Muthukumarasamy, D. Velauthapillai, S.B. Santhosh, V. Asokan, Arab. J. Chem. 11, 645–654 (2018)CrossRefGoogle Scholar
  21. 21.
    O. Kaygili, S. Keser, N. Bulut, T. Ates, Physica B: Condens. Matter 537, 63–67 (2018)CrossRefGoogle Scholar
  22. 22.
    N. Kanasan, S. Adzila, H.A. Rahman, N. Bano, G. Panerselvan, N.A. Hidayati, Key Eng. Mater. 791, 45–49 (2018)CrossRefGoogle Scholar
  23. 23.
    D. Laurencin, N. Almora-Barrios, N.H. de Leeuw, C. Gervais, C. Bonhomme, F. Mauri, W. Chrzanowski, J.C. Knowles, R.J. Newport, A. Wong, Z. Gan, M.E. Smith, Biomaterials 32, 1826–1837 (2011)PubMedCrossRefGoogle Scholar
  24. 24.
    A.Z. Alshemary, M. Akram, Y.-F. Goh, U. Tariq, F.K. Butt, A. Abdolahi, R. Hussain, Ceram. Int. 41, 11886–11898 (2015)CrossRefGoogle Scholar
  25. 25.
    M.M. Islam, A. Zaman, M.S. Islam, M.A. Khan, M.M. Rahman, Prog. Biomater. 3, 21 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    A.M. Hamdani, I.A. Wani, A. Gani, N.A. Bhat, F.A. Masoodi, Innov. Food Sci. Emerg. Technol. 44, 74–82 (2017)CrossRefGoogle Scholar
  27. 27.
    A.W.M. El-Naggar, M.M. Senna, T.A. Mostafa, R.H. Helal, Int. J. Biol. Macromol. 102, 1045–1051 (2017)PubMedCrossRefGoogle Scholar
  28. 28.
    B.G. Ershov, Russ. Chem. Rev. 67, 315–334 (1998)CrossRefGoogle Scholar
  29. 29.
    K. Benfattoum, N. Haddadine, N. Bouslah, A. Benaboura, P. Maincent, R. Barillé, A. Sapin-Minet, M.S. El-Shall, Polym. Adv. Technol. 29, 884–895 (2018)CrossRefGoogle Scholar
  30. 30.
    H. Ichiura, M. Morikawa, K. Fujiwara, J. Mater. Sci. 40, 1987–1991 (2005)CrossRefGoogle Scholar
  31. 31.
    R. Morsy, Roman. J. Biophys. 26, 83–92 (2016)Google Scholar
  32. 32.
    E.A. Abdel-Razik, D.M. Ayaad, A. Elbedwehy, Int. J. Modern. Org. Chem. 2(2), 191–206 (2013)Google Scholar
  33. 33.
    J. Li, H. Sun, D. Sun, Y. Yao, F. Yao, K. Yao, Carbohydr. Polym. 85, 885–894 (2011)CrossRefGoogle Scholar
  34. 34.
    M. Kazemzadeh Narbat, M. Solati Hashtjin, M. Pazouki, Iran. J. Biotechnol. 4, 54–60 (2003)Google Scholar
  35. 35.
    S. Dasgupta, S.S. Banerjee, A. Bandyopadhyay, S. Bose, Langmuir 26, 4958–4964 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    H. Wang, Y. Li, Y. Zuo, J. Li, S. Ma, L. Cheng, Biomaterials 28, 3338–3348 (2007)PubMedCrossRefGoogle Scholar
  37. 37.
    A.J. Salgado, O.P. Coutinho, R.L. Reis, Macromol. Biosci. 4, 743–765 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    W. Pompe, H. Worch, M. Epple, W. Friess, M. Gelinsky, P. Greil, U. Hempel, D. Scharnweber, S. Karl, Mater. Sci. Eng. A 362, 40–60 (2003)CrossRefGoogle Scholar
  39. 39.
    X. Cai, H. Tong, X. Shen, W. Chen, J. Yan, J. Hu, Acta Biomater. 5, 2693–2703 (2009)PubMedCrossRefGoogle Scholar
  40. 40.
    K. Maji, S. Dasgupta. Comparative study on Mechanical Strength of Macroporous Hydroxyapatite-Biopolymer Based Composite Scaffold. International Conference on Advances in Engineering and Technology (ICAET'2014), Singapore, 29–30 March 2014.Google Scholar
  41. 41.
    M. Jayabalan, K.T. Shalumon, M. Mitha, K. Ganesan, M. Epple, Acta Biomater. 6(3), 763–775 (2009)PubMedCrossRefGoogle Scholar
  42. 42.
    J. Zheng, C.Z. Wang, X.X Wang, H.Y. Wang, H. Zhuang, F. Yao. React. Funct. Polym. 67, 780–788 (2007).CrossRefGoogle Scholar
  43. 43.
    A. Marques, R.L. Reis, Mater. Sci. Eng. C 25, 215–229 (2005)CrossRefGoogle Scholar
  44. 44.
    H. Bundela, eXpress Polym. Lett. 2, 201–213 (2008)Google Scholar
  45. 45.
    Y.C. Nho, O.H. Kwon, C. Jie, Radiat. Phys. Chem. 64, 67–75 (2002)CrossRefGoogle Scholar
  46. 46.
    A. Chaturvedi, A.K. Bajpai, J. Bajpai, S.K. Singh, Mater. Sci. Eng. C 65, 408–418 (2016)CrossRefGoogle Scholar
  47. 47.
    X. Yang, K. Yang, S. Wu, X. Chen, F. Yu, J. Li, M. Ma, Z. Zhu, Radiat. Phys. Chem. 79, 606–611 (2010)CrossRefGoogle Scholar
  48. 48.
    B. Gayathri, N. Muthukumarasamy, D. Velauthapillai, S.B. Santhosh, V. Asokan, Arab. J. Chem. 11, 645–654 (2016)CrossRefGoogle Scholar
  49. 49.
    T. Nagyné-Kovács, L. Studnicka, A. Kincses, G. Spengler, M. Molnár, M. Tolner, I. Endre Lukács, I. Szilágyi, G. Pokol, Ceram. Int. 44, 22976–22982 (2018)CrossRefGoogle Scholar
  50. 50.
    G. Devanand Venkatasubbu, S. Ramasamy, V. Ramakrishnan, J. Kumar, 3 Biotech 1, 173–186 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    M.P. Ginebra, T. Traykova, J.A. Planell, J. Controlled Release 113, 102–110 (2006)CrossRefGoogle Scholar
  52. 52.
    E. Kontonasaki, T. Zorba, L. Papadopoulou, E. Pavlidou, X. Chatzistavrou, K. Paraskevopoulos, P. Koidis, Cryst. Res. Technol. 37, 1165–1171 (2002)CrossRefGoogle Scholar
  53. 53.
    I.B. Leonor, H.-M. Kim, F. Balas, M. Kawashita, R.L. Reis, T. Kokubo, T. Nakamura, J. Mater. Chem. 17, 4057–4063 (2007)CrossRefGoogle Scholar
  54. 54.
    P. Zhu, Y. Masuda, K. Koumoto, Biomaterials 25, 3915–3921 (2004)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Polymer Chemistry, Department, National Center for Radiation Research and Technology (NCRRT)Atomic Energy Authority (AEA)Nasr CityEgypt
  2. 2.Biochemistry Department, Faculty of ScienceHelwan UniveristyHelwanEgypt

Personalised recommendations