Enhanced Antifungal Activity of Pure and Iron-Doped ZnO Nanoparticles Prepared in the Absence of Reducing Agents

  • A. Ferin Fathima
  • R. Jothi Mani
  • K. SakthipandiEmail author
  • K. Manimala
  • Aslam Hossain


Pure and iron (Fe)-doped ZnO nanoparticles were synthesized using polyethylene glycol in the absence of reducing agents such as NaOH and ammonia. From XRD patterns, particle sizes pure (33.38 ± 2 nm) and Fe-doped ZnO (27.99 ± 2 nm) were calculated, which were found to be in nanoscale range. XRD patterns of the synthesized samples were refined by the Rietveld method using hexagonal unit cell, and the refinement results for the single-phase samples revealed that the unit cell volume slightly increases by iron doping of ZnO. Antifungal activity of pure and Fe-doped ZnO nanoparticles was observed against three postharvest pathogenic fungi such as Aspergillus niger, Aspergillus flavus and Rhizopus. Iron doping enhances the inhibition zone for all fungal pathogens compared to the pure ZnO nanoparticles. Antifungal activity of the Fe-doped ZnO nanoparticles is comparable with the standard antibiotic mycostatin whose inhibition zone is 18 mm against A. Niger.


Antifungal activity Aspergillus niger Aspergillus flavus Rhizopus ZnO nanoparticles 



  1. 1.
    J. Jiang, J. Pi, J. Cai, The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg. Chem. Appl. 2018, 1062562 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    K.S. Siddiqi, A. ur Rahman, A. Husen, Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res. Lett. 13(1), 141 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    P.A. Arciniegas-Grijalba, M.C. Patiño-Portela, L.P. Mosquera-Sánchez, J.A. Guerrero-Vargas, J.E. Rodríguez-Páez, ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl. Nanosci. 7(5), 225–241 (2017)CrossRefGoogle Scholar
  4. 4.
    E. Ramya, M.V. Rao, L. Jyothi, D.N. Rao, Photoluminescence and nonlinear optical properties of transition metal (Ag, Ni, Mn) doped ZnO nanoparticles. J. Nanosci. Nanotechnol. 18(10), 7072–7077 (2018)PubMedCrossRefGoogle Scholar
  5. 5.
    R. Saleh, N.F. Djaja, Transition-metal-doped ZnO nanoparticles: synthesis, characterization and photocatalytic activity under UV light. Spectrochim. Acta, Part A 130, 581–590 (2014)CrossRefGoogle Scholar
  6. 6.
    K. Kumar, M. Chitkara, I.S. Sandhu, D. Mehta, S. Kumar, Photocatalytic, optical and magnetic properties of Fe-doped ZnO nanoparticles prepared by chemical route. J. Alloys Compds. 588, 681–689 (2014)CrossRefGoogle Scholar
  7. 7.
    J. Ji, A.M. Colosimo, W. Anwand, L.A. Boatner, A. Wagner, P.S. Stepanov, T.T. Trinh et al., ZnO Luminescence and scintillation studied via photoexcitation, X-ray excitation, and gamma-induced positron spectroscopy. Sci. Rep. 6, 31238 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    E.H. Hasabeldaim, O.M. Ntwaeaborwa, R.E. Kroon, E. Coetsee, H.C. Swart, Enhanced green luminescence from ZnO nanorods. J. Vac. Sci. Technol. B, Nanotech. Microelectron. 37(1), 011201 (2019)CrossRefGoogle Scholar
  9. 9.
    R. Raji, K.G. Gopchandran, ZnO nanostructures with tunable visible luminescence: effects of kinetics of chemical reduction and annealing. J. Sci. 2(1), 51–58 (2017)Google Scholar
  10. 10.
    R.R. Piticescu, R.M. Piticescu, C.J. Monty, Synthesis of Al-doped ZnO nanomaterials with controlled luminescence. J. Eur. Ceram. Soc. 26(14), 2979–2983 (2006)CrossRefGoogle Scholar
  11. 11.
    G. Krishna Reddy, A. Jagannatha Reddy, R. Hari Krishna, B.M. Nagabhushana, G.R. Gopal, Luminescence and spectroscopic investigations on Gd3 + doped ZnO nanophosphor. J. Asian Ceram. Soc. 5(3), 350–356 (2017)CrossRefGoogle Scholar
  12. 12.
    D.C. Agarwal, U.B. Singh, S. Gupta, R. Singhal, P.K. Kulriya, F. Singh, A. Tripathi, J. Singh, U.S. Joshi, D.K. Avasthi, Enhanced room temperature ferromagnetism and green photoluminescence in Cu doped ZnO thin film synthesised by neutral beam sputtering. Sci. Rep. 9(1), 6675 (2019)PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    V.N. Kalpana, V. Devi Rajeswari, A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorg. Chem. Appl. 2018, 3569758 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    A. Naveed Ul Haq, A. Nadhman, I. Ullah, G. Mustafa, M. Yasinzai, I. Khan, Synthesis approaches of zinc oxide nanoparticles: the dilemma of ecotoxicity. J. Nanomater. 2017, 8510342 (2017)CrossRefGoogle Scholar
  15. 15.
    M. Singh, J. Singh, D. Sharma, B. Kaur, and M. Rawat, Plant leaves mediated synthesis of semiconductor ZnO nanoparticles and its application for seed germination. in AIP Conference Proceedings, vol. 2006, no. 1 (AIP Publishing, 2018), p. 030031Google Scholar
  16. 16.
    A. Paduraru, C. Ghitulica, R. Trusca, V.A. Surdu, I.A. Neacsu, A.M. Holban, A.C. Birca, F. Iordache, B.S. Vasile, Antimicrobial wound dressings as potential materials for skin tissue regeneration. Materials 12(11), 1859 (2019)PubMedCentralCrossRefGoogle Scholar
  17. 17.
    D. Sardella, R. Gatt, V.P. Valdramidis, Physiological effects and mode of action of ZnO nanoparticles against postharvest fungal contaminants. Food Res. Int. 101, 274–279 (2017)PubMedCrossRefGoogle Scholar
  18. 18.
    R. Cai, Y. Du, D. Yang, G. Jia, B. Zhu, B. Chen, Y. Lv et al., Free-standing 2D nanorafts by assembly of 1D nanorods for biomolecule sensing. Nanoscale (2019). CrossRefPubMedGoogle Scholar
  19. 19.
    V.N. Rao, N.L. Reddy, M.M. Kumari, P. Ravi, M. Sathish, K.M. Kuruvilla, V. Preethi et al., Photocatalytic recovery of H2 from H2S containing wastewater: surface and interface control of photo-excitons in Cu2S@ TiO2 core-shell nanostructures. Appl. Catal. B 254, 174–185 (2019)CrossRefGoogle Scholar
  20. 20.
    P.S. Basavarajappa, B.N.H. Seethya, N. Ganganagappa, K.B. Eshwaraswamy, R.R. Kakarla, Enhanced photocatalytic activity and biosensing of gadolinium substituted BiFeO3 nanoparticles. ChemistrySelect 3(31), 9025–9033 (2018)CrossRefGoogle Scholar
  21. 21.
    N.P. Shetti, S.D. Bukkitgar, R.R. Kakarla, C. Reddy, T.M. Aminabhavi, ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. Biosens. Bioelectron. 141, 111417 (2019)PubMedCrossRefGoogle Scholar
  22. 22.
    N.L. Reddy, V.N. Rao, M.M. Kumari, R.R. Kakarla, P. Ravi, M. Sathish, M. Karthik, S.M. Venkatakrishnan, Nanostructured semiconducting materials for efficient hydrogen generation. Environ. Chem. Lett. 16(3), 765–796 (2018)CrossRefGoogle Scholar
  23. 23.
    C.V. Reddy, I.N. Reddy, K.R. Reddy, S. Jaesool, K. Yoo, Template-free synthesis of tetragonal Co-doped ZrO2 nanoparticles for applications in electrochemical energy storage and water treatment. Electrochim. Acta 317, 416–426 (2019)CrossRefGoogle Scholar
  24. 24.
    N.P. Shetti, S.D. Bukkitgar, K.R. Reddy, C.V. Reddy, T.M. Aminabhavi, S.D. Bukkitgar, Nanostructured titanium oxide hybrids-based electrochemical biosensors for healthcare applications. Colloids Surf. B 178, 385–394 (2019)CrossRefGoogle Scholar
  25. 25.
    S.B. Patil, P.S. Basavarajappa, N. Ganganagappa, M.S. Jyothi, A.V. Raghu, K.R. Reddy, Recent advances in non-metals-doped TiO2 nanostructured photocatalysts for visible-light driven hydrogen production, CO2 reduction and air purification. Int. J. Hydrogen Energy 44(26), 13022–13039 (2019)CrossRefGoogle Scholar
  26. 26.
    C.V. Reddy, I.N. Reddy, B. Akkinepally, K.R. Reddy, J. Shim, Synthesis and photoelectrochemical water oxidation of (Y, Cu) codoped α-Fe2O3 nanostructure photoanode. J. Alloys Compds. 814, 152349 (2020)CrossRefGoogle Scholar
  27. 27.
    N.P. Shetti, S.J. Malode, D.S. Nayak, G.B. Bagihalli, S.S. Kalanur, R.S. Malladi, C.V. Reddy, T.M. Aminabhavi, K.R. Reddy, Fabrication of ZnO nanoparticles modified sensor for electrochemical oxidation of methdilazine. Appl. Surf. Sci. 496, 143656 (2019)CrossRefGoogle Scholar
  28. 28.
    C.V. Reddy, I.N. Reddy, V.V. Harish, K.R. Reddy, N.P. Shetti, J. Shim, T.M. Aminabhavi, Efficient removal of toxic organic dyes and photoelectrochemical properties of iron-doped zirconia nanoparticles. Chemosphere 239, 124766 (2020)PubMedCrossRefGoogle Scholar
  29. 29.
    S. Gullaa, D. Lomadab, V.V. Srikanthc, M.V. Shankard, K.R. Reddye, S. Sonif, M.C. Reddya, Recent advances in nanoparticles-based strategies for cancer therapeutics and antibacterial applications. Nanotechnology 46, 255 (2019)Google Scholar
  30. 30.
    A. Misra, S. Jain, D. Kishore, V. Dave, K.R. Reddy, V. Sadhu, J. Dwivedi, S. Sharma, A facile one pot synthesis of novel pyrimidine derivatives of 1, 5-benzodiazepines via domino reaction and their antibacterial evaluation. J. Microbiol. Methods 163, 105648 (2019)PubMedCrossRefGoogle Scholar
  31. 31.
    A. Nagaraja, M.D. Jalageri, Y.M. Puttaiahgowda, K.R. Reddy, A.V. Raghu, A review on various maleic anhydride antimicrobial polymers, J. Microbiol. Methods 105650 (2019)Google Scholar
  32. 32.
    P. Sharma, S. Pant, V. Dave, K. Tak, V. Sadhu, K.R. Reddy, Green synthesis and characterization of copper nanoparticles by Tinospora cardifolia to produce nature-friendly copper nano-coated fabric and their antimicrobial evaluation. J. Microbiol. Methods 160, 107–116 (2019)PubMedCrossRefGoogle Scholar
  33. 33.
    K.R. Reddya, P.A. Reddyb, C. Venkata, N.P. Reddyc, B. Babuc, K. Ravindranadhc, M.V. Shankare, M.C. Reddyf, S. Sonig, S. Naveenh, Functionalized magnetic nanoparticles/biopolymer hybrids: synthesis methods, properties and biomedical applications. Nanotechnology 46, 227 (2019)CrossRefGoogle Scholar
  34. 34.
    R.S. Kumar, S.H. Dananjaya, M. De Zoysa, M. Yang, Enhanced antifungal activity of Ni-doped ZnO nanostructures under dark conditions. RSC Adv. 6(110), 108468–108476 (2016)CrossRefGoogle Scholar
  35. 35.
    M.M. Chikkanna, S.E. Neelagund, K.K. Rajashekarappa, Green synthesis of Zinc oxide nanoparticles (ZnO NPs) and their biological activity. SN Appl. Sci. 1(1), 117 (2019)CrossRefGoogle Scholar
  36. 36.
    J. Hussein, M. El-Banna, T.A. Razik, M.E. El-Naggar, Biocompatible zinc oxide nanocrystals stabilized via hydroxyethyl cellulose for mitigation of diabetic complications. Int. J. Biol. Macromol. 107, 748–754 (2018)PubMedCrossRefGoogle Scholar
  37. 37.
    Q.A. Kadhim, R.M. Alwan, R.A. Ali, A.N. Jassim, Synthesis of zinc oxide/polystyrene nanocoposite films and study of antibacterial activity against Escherichia coli and Staphylococcus aures. Nanosci. Nanotechnol. 6(1), 1–5 (2016)Google Scholar
  38. 38.
    S. Daikh, F.Z. Zeggai, A. Bellil, A. Benyoucef, Chemical polymerization, characterization and electrochemical studies of PANI/ZnO doped with hydrochloric acid and/or zinc chloride: differences between the synthesized nanocomposites. J. Phys. Chem. Solids 121, 78–84 (2018)CrossRefGoogle Scholar
  39. 39.
    R.A. Samson, J. Houbraken, R.C. Summerbell, B. Flannigan, J.D. Miller, Common and important species of fungi and actinomycetes in indoor environments, Microorganisms in home and indoor work environments: diversity, health impacts, investigation and control 285–473 (2002)Google Scholar
  40. 40.
    M. Machida, K. Gomi (eds.), Aspergillus: Molecular Biology and Genomics (Horizon Scientific Press, Wymondham, 2010)Google Scholar
  41. 41.
    A. Abe, K. Asano, T. Sone, A molecular phylogeny-based taxonomy of the genus Rhizopus. Biosci. Biotechnol. Biochem. 74(7), 1325–1331 (2010)PubMedCrossRefGoogle Scholar
  42. 42.
    E.M. Johnson, J.O. Ojwang, A. Szekely, T.L. Wallace, D.W. Warnock, Comparison of in vitro antifungal activities of free and liposome-encapsulated nystatin with those of four amphotericin B formulations. Antimicrob. Agents Chemother. 42(6), 1412–1416 (1998)PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    V.C. Valerie, M.P. English, Some effects of nystatin on the growth of four Aspergillus species. Microbiology 40(1), 107–118 (1965)Google Scholar
  44. 44.
    J.A. Koka, A.H. Wani, M.Y. Bhat, Evaluation of antifungal activity of Magnesium oxide (MgO) and Iron oxide (FeO) nanoparticles on rot causing fungi. J Drug Deliv Ther 9(2), 173–178 (2019)Google Scholar
  45. 45.
    N. Al-Dhabi, M. Valan Arasu, Environmentally-friendly green approach for the production of zinc oxide nanoparticles and their anti-fungal, ovicidal, and larvicidal properties. Nanomaterials 8(7), 500 (2018)PubMedCentralCrossRefGoogle Scholar
  46. 46.
    M.A. Ciciliati, M.F. Silva, D.M. Fernandes, M.A. de Melo, A.A. Hechenleitner, E.A. Pineda, Fe-doped ZnO nanoparticles: synthesis by a modified sol–gel method and characterization. Mater. Lett. 159, 84–86 (2015)CrossRefGoogle Scholar
  47. 47.
    M. Kumari, V.P. Giri, S. Pandey, M. Kumar, R. Katiyar, C.S. Nautiyal, A. Mishra, An insight into the mechanism of antifungal activity of biogenic nanoparticles than their chemical counterparts. Pestic. Biochem. Physiol. 157, 45–52 (2019)PubMedCrossRefGoogle Scholar
  48. 48.
    J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Physica. B 192(1–2), 55–69 (1993)CrossRefGoogle Scholar
  49. 49.
    M.S. Geetha, H. Nagabhushana, H.N. Shivananjaiah, Green mediated synthesis and characterization of ZnO nanoparticles using Euphorbia Jatropa latex as reducing agent. J. Sci. 1(3), 301–310 (2016)Google Scholar
  50. 50.
    P.M. Anjana, M.R. Bindhu, M. Umadevi, R.B. Rakhi, Antimicrobial, electrochemical and photo catalytic activities of Zn doped Fe3O4 nanoparticles. J. Mater. Sci. 29(7), 6040–6050 (2018)Google Scholar
  51. 51.
    Y. Cherifi, A. Chaouchi, Y. Lorgoilloux, M. Rguiti, A. Kadri, C. Courtois, Electrical, dielectric and photocatalytic properties of Fe-doped ZnO nanomaterials synthesized by sol gel method. Process. Appl. Ceram. 10(3), 125–135 (2016)CrossRefGoogle Scholar
  52. 52.
    G. Zhang, X. Shen, Y. Yang, Facile synthesis of monodisperse porous ZnO spheres by a soluble starch-assisted method and their photocatalytic activity. J. Phys. Chem. C 115(15), 7145–7152 (2011)CrossRefGoogle Scholar
  53. 53.
    Z. Rezay Marand, M. Helmi Rashid Farimani, Study of magnetic and structural and optical properties of Zn doped Fe3O4 nanoparticles synthesized by co-precipitation method for biomedical application. Nanomed. J. 1(4), 238–247 (2014)Google Scholar
  54. 54.
    M. Premanathan, K. Karthikeyan, K. Jeyasubramanian, G. Manivannan, Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed. Nanotechnol. Biol. Med. 7(2), 184–192 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsSadakathullah Appa CollegeTirunelveliIndia
  2. 2.Department of PhysicsSethu Institute of TechnologyKariapattiIndia
  3. 3.Department of Physical and Inorganic Chemistry, Institute of Natural Sciences and MathematicsUral Federal UniversityYekaterinburgRussia

Personalised recommendations