Advertisement

Synthesis and Characterization of a Large-Sized π-Conjugated Copper(II) Complex Nanosheet

  • Yurong Liu
  • Zhiyuan XieEmail author
  • Wai-Yeung WongEmail author
Article
  • 41 Downloads

Abstract

Inspired by the flexibility of the bottom-up approach in choosing building blocks of two-dimensional (2D) materials, a π-conjugated metal complex nanosheet (HHTP-Cu) was successfully prepared by the coordination of the ligand 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) and Cu(II) ion at the water/oil interface. Field-emission scanning electron microscopy disclosed the large-size domain and transmission electron microscopy revealed the sheet morphology of the nanosheet. The flat and smooth surface was also confirmed by atomic force microscopy which further demonstrated the proposed structure. Energy dispersive X-ray spectroscopy was applied to verify the homogeneous distribution of the elements while X-ray photoelectron spectroscopy was used to investigate the composition of the nanosheet.

Keywords

2D material Nanosheet Metal complex Metallopolymer Bottom-up approach 

Notes

Acknowledgements

We thank the Science, Technology and Innovation Committee of Shenzhen Municipality (JCYJ20170303160036674), the Hong Kong Research Grants Council (PolyU 153051/17P), the National Natural Science Foundation of China (51573151), the Areas of Excellence Scheme of HKSAR (AoE/P-03/08), the Hong Kong Polytechnic University (1-ZE1C) and the Endowed Professorship from Ms. Clarea Au (847S) for the financial support. We also thank the Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences.

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)CrossRefGoogle Scholar
  2. 2.
    E. Lee, J.-K. Kim, M. Lee, Angew. Chem. Int. Ed. 121, 3711 (2009)CrossRefGoogle Scholar
  3. 3.
    T. Bauer, Z. Zheng, A. Renn, R. Enning, A. Stemmer, J. Sakamoto, A.D. Schlüter, Angew. Chem. Int. Ed. 50, 8025 (2011)CrossRefGoogle Scholar
  4. 4.
    K.-D. Zhang, J. Tian, D. Hanifi, Y. Zhang, A.C.-H. Sue, T.-Y. Zhou, L. Zhang, X. Zhao, Y. Liu, Z.-T. Li, J. Am. Chem. Soc. 135, 17913 (2013)CrossRefGoogle Scholar
  5. 5.
    T. Kambe, R. Sakamoto, K. Hoshiko, K. Takada, M. Miyachi, J.-H. Ryu, S. Sasaki, J. Kim, K. Nakazato, M. Takata, H. Nishihara, J. Am. Chem. Soc. 135, 2462 (2013)CrossRefGoogle Scholar
  6. 6.
    D.L. Turner, T.P. Vaid, P.W. Stephens, K.H. Stone, A.G. DiPasquale, A.L. Rheingold, J. Am. Chem. Soc. 130, 14 (2008)CrossRefGoogle Scholar
  7. 7.
    T. Kambe, R. Sakamoto, T. Kusamoto, T. Pal, N. Fukui, K. Hoshiko, T. Shimojima, Z. Wang, T. Hirahara, K. Ishizaka, S. Hasegawa, F. Liu, H. Nishihara, J. Am. Chem. Soc. 136, 14357 (2014)CrossRefGoogle Scholar
  8. 8.
    X. Huang, P. Sheng, Z. Tu, F. Zhang, J. Wang, H. Geng, Y. Zou, C. Di, Y. Yi, Y. Sun, W. Xu, D. Zhu, Nat. Commun. 6, 7408 (2015)CrossRefGoogle Scholar
  9. 9.
    A.J. Clough, J.W. Yoo, M.H. Mecklenburg, S.C. Marinescu, J. Am. Chem. Soc. 137, 118 (2015)CrossRefGoogle Scholar
  10. 10.
    D. Sheberla, L. Sun, M. Blood-Forsythe, S. Er, C.R. Wade, C.K. Brozek, A. Aspuru-Guzik, M. Dincă, J. Am. Chem. Soc. 136, 8859 (2014)CrossRefGoogle Scholar
  11. 11.
    R. Dong, M. Pfeffermann, H. Liang, Z. Zheng, X. Zhu, J. Zhang, X. Feng, Angew. Chem. Int. Ed. 54, 12058 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Hmadeh, Z. Lu, Z. Liu, F. Gándara, H. Furukawa, S. Wan, V. Augustyn, R. Chang, L. Liao, F. Zhou, E. Perre, V. Ozolins, K. Suenaga, X. Duan, B. Dunn, Y. Yamamto, O. Terasaki, O.M. Yaghi, Chem. Mater. 24, 3511 (2012)CrossRefGoogle Scholar
  13. 13.
    R. Dong, Z. Zheng, D. Tranca, J. Zhang, N. Chandrasekhar, S. Liu, X. Zhuang, G. Seifert, X. Feng, Chem. Eur. J. 23, 2255 (2017)CrossRefGoogle Scholar
  14. 14.
    N. Lahiri, N. Lotfizadeh, R. Tsuchikawa, V.V. Deshpande, J. Louie, J. Am. Chem. Soc. 139, 19 (2017)CrossRefGoogle Scholar
  15. 15.
    Y. Liu, R. Sakamoto, C.-L. Ho, H. Nishihara, W.-Y. Wong, J. Mater. Chem. C 7, 9159 (2019)CrossRefGoogle Scholar
  16. 16.
    C.E. Housecroft, E.C. Constable, Chem. Soc. Rev. 44, 8386 (2015)CrossRefGoogle Scholar
  17. 17.
    A.M. Barthram, R.L. Cleary, R. Kowallick, M.D. Ward, Chem. Commun. 34, 2695 (1998)CrossRefGoogle Scholar
  18. 18.
    L. Sun, M.G. Campbell, M. Dincă, Angew. Chem. Int. Ed. 55, 3566 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenPeople’s Republic of China
  2. 2.Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHong KongPeople’s Republic of China
  3. 3.Hong Kong Baptist University Institute of Research and Continuity Education, Shenzhen Virtual University ParkShenzhenPeople’s Republic of China
  4. 4.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople’s Republic of China

Personalised recommendations