Advertisement

Stabilization and Dispersion of ZnO Nanoparticles in PVA Matrix

  • Ananya Barman
  • Ayan De
  • Mahuya DasEmail author
Article
  • 21 Downloads

Abstract

In the present work ZnO nano particles have been synthesized and stabilized by polyvinyl alcohol, PVA, under in situ and ex situ condition and focused on the effect of reaction conditions on the stabilization and dispersion of ZnO nano particles in PVA. From particle size analysis it is evident that, the rate of agglomeration is slower for ex situ synthesis method. It was also observed that the peak has shifted towards lower diameter value of the nano particles. The synthesis of ZnO nano particle has further been established with UV–VIS peak at around 350 nm and morphology study by FESEM study. EDAX spectra exhibited that weight percent of ZnO NP formed is around 2.5%. Dynamic mechanical study and thermal study was also made with the samples. It has been observed that mechanical property under dynamic condition is better with ex situ samples and storage modulus is 1.7 times higher than the in situ sample. Thermal property of PVA has been improved with composite formation as the percent char has been increased in case of composites.

Keywords

ZnO Nanoparticle Stabilization Dispersion Mechanical property Thermal property 

Notes

Acknowledgements

We would gratefully acknowledge JIS College of Engineering for providing laboratory infrastructure for this work.

Compliance with Ethical Standards

Conflict of interest

There is no conflict of interest regarding the publication of this paper.

References

  1. 1.
    C.N.R. Rao, S.R.C. Vivekchand, K. Biswas, A. Govindaraja, Dalton Trans. (2007).  https://doi.org/10.1039/B708342D CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    M. Najafi, R. Ansari, A. Darvizeh, Polym. Compos. 40, 2523–2533 (2019)CrossRefGoogle Scholar
  3. 3.
    D.R. Son, A.V. Raghu, K.R. Reddy, H.M. Jeong, J. Macromol. Sci. B 55, 1099–1110 (2016)CrossRefGoogle Scholar
  4. 4.
    S.J. Han, H-Il Lee, H.M. Jeong, B.K. Kim, A.V. Raghu, K.R. Reddy, J. Macromol. Sci. B 53, 1193–1204 (2014)CrossRefGoogle Scholar
  5. 5.
    M. Hassana, K.R. Reddy, E. Haque, N.F. Shaikh, S. Ghasemi, A.I. Minett, V.G. Gomes, Compos. Sci. Technol. 98, 1–8 (2014)CrossRefGoogle Scholar
  6. 6.
    Y.R. Lee, L.S. Cheol, K.H. Lee, H.M. Jeong, A.V. Raghu, K.R. Reddy, B.K.J. Kim, Polym. Sci. Polym. Chem. A 48, 1477–1484 (2010)CrossRefGoogle Scholar
  7. 7.
    K.R. Reddy, K.P. Lee, A.I. Gopalan, J. Nanosci. 7, 3117–3125 (2007)Google Scholar
  8. 8.
    K.R. Reddy, B.C. Sin, K.S. Ryu, J.C. Kim, H. Chung, Y. Lee, Synth. Met. 159, 595–603 (2009)CrossRefGoogle Scholar
  9. 9.
    K.R. Reddy, K.P. Lee, A.I. Gopalan, J. Appl. Polym. 106, 1181–1191 (2007)CrossRefGoogle Scholar
  10. 10.
    K.R. Reddy, K.P. Lee, A.I. Gopalan, A.M. Showkat, Polym. J. 38, 349–354 (2006)CrossRefGoogle Scholar
  11. 11.
    K.R. Reddy, H.M. Jeong, Y. Lee, A.V. Raghu, J. Polym. Sci. A 48, 1477–1484 (2010)CrossRefGoogle Scholar
  12. 12.
    Y. Khadidja, B.B. Raul, B. Abdelghani, M. Emilia, J. Therm. Anal. Calorim. 135, 2089–2100 (2019)CrossRefGoogle Scholar
  13. 13.
    S. Benyakhoua, A. Belmokhtarb, A. Zehhafa, A. Benyoucefa, J. Mol. Struct. 1150, 580–585 (2017)CrossRefGoogle Scholar
  14. 14.
    S. Benykhlef, A. Bekhoukh, R. Berenguer, A. Benyoucef, E. Morallon, Colloid Polym. Sci. 294, 1877–1885 (2016)CrossRefGoogle Scholar
  15. 15.
    K.R. Reddy, K.P. Lee, Y. Lee, A.I. Gopalan, Mater. Lett. 62, 1815–1818 (2008)CrossRefGoogle Scholar
  16. 16.
    X. Cao, H. Dong, C.M. Li, Biomacromolecules 8, 899–904 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    H. Karami, A. Mohammadi, Int. J. Electrochem. Sci. 10, 7392–7408 (2015)Google Scholar
  18. 18.
    C.H. Cholakis, W. Zingg, M.V. Sefton, J. Biomed. Mater. Res. 23, 417–441 (1989)PubMedCrossRefGoogle Scholar
  19. 19.
    E. Sheha, H. Khoder, T.S. Shanap, M.G. El-Shaarawy, M.K. El Mansy, Int. J. Light Electron Opt. 123, 1161–1166 (2012)CrossRefGoogle Scholar
  20. 20.
    I. Restrepo, P. Flores, S.R. Llamazares, Polym.-Plast. Technol. 58, 105–112 (2019)Google Scholar
  21. 21.
    A.K. Radzimska, T. Jesionowski, Materials 7, 2833–2881 (2014)CrossRefGoogle Scholar
  22. 22.
    Z.L. Wang, J. Phys.: Condens. Matter 16, R829–R858 (2004)Google Scholar
  23. 23.
    O. Singh, N. Kohli, R.C. Singh, Sens. Actuators B 178, 149–154 (2013)CrossRefGoogle Scholar
  24. 24.
    D. Brida, E. Fortunato, I. Ferreira, H. Aguas, R. Martins, J. Non-Cryst. Solids 299, 1272–1276 (2002)CrossRefGoogle Scholar
  25. 25.
    H. Zhang, M. Hortal, M.J. Beneyto, E. Rosa, M.L. Lledo, I. Lorente, LWT 78, 250–257 (2017)CrossRefGoogle Scholar
  26. 26.
    Y.H. Huang, Y. Zang, L. Liu, S.S. Fan, Y. Wei, J. He, J. Nanosci. Nanotechnol. 6, 787–790 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    M. Ristiac, S. Musiac, M. Ivanda, S. Popoviac, J. Alloys Compd. 397, L1–L4 (2005)CrossRefGoogle Scholar
  28. 28.
    J.J. Wu, S.C. Liu, Adv. Mater. 14, 215–218 (2002)CrossRefGoogle Scholar
  29. 29.
    R.C. Wang, C.C. Tsai, Appl. Phys. A 94, 241–245 (2009)CrossRefGoogle Scholar
  30. 30.
    M. Suchea, S. Christoulakis, K. Moschovis, N. Katsarakis, G. Kiriakidis, Thin Solid Films 515, 551–554 (2006)CrossRefGoogle Scholar
  31. 31.
    A. Ashour, M.A. Kaid, N.Z. El-Syed, A.A. Ibrahim, Appl. Surf. Sci. 252, 7844–7848 (2006)CrossRefGoogle Scholar
  32. 32.
    S. Chang, S.O. Yoon, H.J. Park, A. Sakai, Mater. Lett. 53, 432–436 (2002)CrossRefGoogle Scholar
  33. 33.
    S.J. Pearton, D.P. Norton, Y.W. Heo, K. Ip, T.J. Steiner, Vac. Sci. Technol. B 22, 932–948 (2004)CrossRefGoogle Scholar
  34. 34.
    Z. Khorsand, A. Abid, W.H. Majid, H.Z. Wang, R. Yousefi, M. Golsheikh, Z.F. Ren, Ultrason. Sonochem. 20, 395–400 (2013)CrossRefGoogle Scholar
  35. 35.
    M. Kooti, A. Nagdhi Sedish, J. Chem. (2013).  https://doi.org/10.1155/2013/562028 CrossRefGoogle Scholar
  36. 36.
    D. Rajesh, B. Vara Lakshmi, C.S. Sunandana, Physica B 407, 4537–4539 (2012)CrossRefGoogle Scholar
  37. 37.
    A. Shetty, K. Nanda, Appl. Phys. A 109, 151–157 (2012)CrossRefGoogle Scholar
  38. 38.
    A. Vazquez, I.A. Lopez, I. Gomez, J. Mater. Sci. 48, 2701–2704 (2013)CrossRefGoogle Scholar
  39. 39.
    Y. Liu, L.M. Geever, J.E. Kennedy, C.L. Higginbotham, P.A. Cahill, G.B. McGuinness, J. Mech. Behav. Biomed. Mater. 3, 203–209 (2010)PubMedCrossRefGoogle Scholar
  40. 40.
    A.S. Asran, S. Henning, G.H. Michler, Polym. J. 51, 868–876 (2010)CrossRefGoogle Scholar
  41. 41.
    W.H. Eisa, A.A. Shabaka, React. Funct. Polym. 73, 1510–1516 (2013)CrossRefGoogle Scholar
  42. 42.
    M. Pattabi, B.S. Amma, K. Manzoor, Mater. Res. Bull. 42, 828–835 (2007)CrossRefGoogle Scholar
  43. 43.
    I. Esparza, M. Paredes, R. Martinez, A. Gaona-Couto, G. Sanchez-Loredo, L.M. Flores-Velez, O. Dominguez, Mater. Sci. Appl. 2, 1584–1592 (2011)Google Scholar
  44. 44.
    E.G. Ahangar, N. Shahtahmassebi, M.H.A. Fard, M.J. Khojastehpour, Food Process. Preserv. 39, 1442–1451 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryJIS College of EngineeringNadiaIndia
  2. 2.Department of Plastic and Polymer EngineeringMaharashtra Institute of TechnologyAurangabadIndia
  3. 3.Regent Education and Research FoundationBarrackporeIndia

Personalised recommendations