DNA Binding, Molecular Docking and Antimicrobial Evaluation of Novel Azo Dye Ligand and Their Metal Complexes
- 41 Downloads
Abstract
In the present work, the synthesis of novel azo dye ligand 6-hydroxy-4-methyl-2-oxo-1-propyl-5-[(E)-1,3-thiazol-2-yldiazenyl]-1,2-dihydropyridine-3-carbonitrile (L) and its Cu(II), Co(II) and Ni(II) transition complexes were prepared. The newly formed compounds were characterized by elemental analysis, UV–Vis, FT-IR, 1H NMR, LC–MS, TGA and magnetic susceptibility measurement. The molar conductance indicates that all the metal complexes are non-electrolytic in nature Based on spectral data indicate square planar geometry was deduced for Cu(II) and Ni(II) complexes, Co(II) complex has tridentate chelation of ligand and produce an octahedral geometry around the metal ion. Additionally, the computational study has been performed using density functional theory (DFT) calculation was used to study the electronic structure of synthesized ligand and their complexes. The in vitro antimicrobial activity of the azo dye ligand and its complexes was tested against Gram +ve bacteria (Bacillus subtilis), Gram –ve bacteria (Escherichia coli), yeast (Candida albicans) and fungus (Aspergillus flavus). All the complexes showed enhanced biocidal activity compared to the free ligand. Moreover, azo dye ligand and its metal complexes have been studied for their antioxidant activity. The DNA-binding activity of metal complexes (1a–1c) was studied by electronic absorption spectroscopy and fluorescence spectroscopy. All the complexes bound to CT-DNA through an intercalation mode. Additionally, all the metal complexes act as good cleavage agents against the pBR322 DNA. The computer-aided molecular docking studies of metal complexes with the receptor of GlcN-6-P synthase showed that metal complexes are potent drugs for the target enzymes.
Keywords
Azo dye Metal chelates TGA DFT DNA binding Molecular dockingNotes
Supplementary material
References
- 1.M. Gaber, S.K. Fathalla, H.A. El-Ghamry, Appl. Organomet. Chem. 33, e4707 (2019)CrossRefGoogle Scholar
- 2.F.A. Saad, H.A. El-Ghamry, M.A. Kassem, Appl. Organomet. Chem. 33, 4965 (2019)CrossRefGoogle Scholar
- 3.A.Z. El-Sonbati, M.A. Diab, A.A. El-Bindary, A.F. Shoair, N.M. Beshry, J. Mol. Liq. 218, 400–420 (2016)CrossRefGoogle Scholar
- 4.A. Tupys, J. Kalembkiewicz, Y. Ostapiuk, V.M.O. Tymoshuk, E. Woz nicka, L. Byczyn ski, J. Therm. Anal. Calorim. 127, 2233–2242 (2017)CrossRefGoogle Scholar
- 5.A. Penchev, D. Simov, N. Gadjev, Dyes Pigm. 16, 77 (1991)CrossRefGoogle Scholar
- 6.A.Z. El-Sonbati, G.G. Mohamed, A.A. El-Bindary, W.M.I. Hassan, A.K. Elkholy, J. Mol. Liq. 209, 625–634 (2015)CrossRefGoogle Scholar
- 7.S.H. Alotaibi, A.S. Radwan, Y.K. Abdel-Monem, M.M. Makhlouf, Spectrochim. Acta A. 205, 364–375 (2018)CrossRefGoogle Scholar
- 8.Ö.F. Öztürk, Trans. Met. Chem. 32, 224–227 (2007)CrossRefGoogle Scholar
- 9.K.J. AL-Adilee, A.K. Abass, A.M. Taher, J. Mol. Struct. (2016). https://doi.org/10.1016/j.molstruc.2015.11.038 CrossRefGoogle Scholar
- 10.J. Joseph, B.H. Mehta, Russ. J. Coord. Chem. 33, 124–129 (2007)CrossRefGoogle Scholar
- 11.Fawaz A. Saad, Hoda A. El-Ghamry, M.A. Kassem, Appl. Organomet. Chem. 33, 4965 (2019)CrossRefGoogle Scholar
- 12.K. Singh, M.S. Barwa, P. Tyagi, Eur. J. Med. Chem. 42, 394–402 (2007)PubMedCrossRefGoogle Scholar
- 13.S.S. Chavan, V.A. Sawant, J. Mol. Struct. 965, 1–6 (2010)CrossRefGoogle Scholar
- 14.K.J. Al-Adilee, B.A. Hatem, J. Adv. Chem. 11(3), 3412–3425 (2015)CrossRefGoogle Scholar
- 15.S. Dhar, D. Senapati, P.K. Das, P. Chatopadhyay, M. Nethaji, A.R. Chakravarty, J. Am. Chem. Soc. 125, 12118–12124 (2003)PubMedCrossRefGoogle Scholar
- 16.N. Chitrapriya, V. Mahalingam, M. Zeller, K. Natarajan, Inorg. Chim. Acta 363, 3685 (2010)CrossRefGoogle Scholar
- 17.M. Sirajuddin, N. Uddin, S. Ali, M.N. Tahir, Mol. Biomol. Spectrosc. 111, 116 (2013)Google Scholar
- 18.S. Kathiresan, S. Mugesh, J. Annaraj, M. Murugan, New J. Chem. 41, 1267 (2017)CrossRefGoogle Scholar
- 19.H. Xu, K.C. Zheng, Y. Chen, Y.Z. Li, L.J. Lin, H. Li, P.X. Zhang, L.N. Ji, Dalton Trans. 3, 2260–2268 (2003)CrossRefGoogle Scholar
- 20.R. Kramer, Coord. Chem. Rev. 182, 243–261 (1999)CrossRefGoogle Scholar
- 21.R.F. Tabor, T.M. McCoy, H. Yingxue, B.L. Wilkinson, Bull. Chem. Soc. Jpn 91, 932–939 (2018)CrossRefGoogle Scholar
- 22.P. Weis, S. Wu, Macromol. Rapid Commun. 39, 1700220 (2018)CrossRefGoogle Scholar
- 23.N. Venugopal, G. Krishnamurthy, H.S. Bhojyanaik, P. Murali Krishna, J. Mol. Struct. 183, 37–51 (2019)CrossRefGoogle Scholar
- 24.W. You, H.-Y. Zhu, W. Huang, B. Hu, Y. Fan, X.-Z. You, Dalton Trans. 39, 7876–7880 (2010)PubMedCrossRefGoogle Scholar
- 25.B.G. Devika, B.H. Doreswamy, N.M. Mallikarjuna, H.C. Tandon, J. Mol. Struct. (2019). https://doi.org/10.1016/j.molstruc.2019.02.029 CrossRefGoogle Scholar
- 26.S. Yousef-Ebrahimipour, I. Sheikhshoaie, J. Castro, M. Dusek, Z. Tohidian, V. Eigner, M. Khaleghi, RSC Adv. (2015). https://doi.org/10.1039/c5ra17524k CrossRefGoogle Scholar
- 27.A. Vogel, Textbook of Practical Organic Chemistry, 5th edn. (Longman Group, London, 1989)Google Scholar
- 28.M.J. Frisch, Gaussian 09, Revision A02 (Gaussian Inc., Wallingford, 2009)Google Scholar
- 29.A.D. Becke, J. Chem. Phys. 98, 5648 (1993)CrossRefGoogle Scholar
- 30.M.F. Reichmann, S.A. Rice, C.A. Thomas, P. Doty, J. Am. Chem. Soc. 76, 3047 (1954)CrossRefGoogle Scholar
- 31.A. Blask, T.C. Bruice, Acc. Chem. Res. 32, 475–484 (1999)CrossRefGoogle Scholar
- 32.A.A.A. Aziz, S.H. Seda, J Fluoresc 27, 1051–1066 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
- 33.A. Bauer, W. Kirby, J. Sherris, M. Turck, Am. J. Clin. Pathol. 45, 493 (1966)PubMedCrossRefPubMedCentralGoogle Scholar
- 34.M. Pfaller, L. Burmeister, M. Bartlett, M. Rinaldi, J. Clin. Microbiol. 26, 1437 (1988)PubMedPubMedCentralGoogle Scholar
- 35.H. Wu, J. Kong, Z. Yang, X. Wang, F. Shi, Y. Zhang, Trans. Met. Chem. 39, 951–960 (2014)CrossRefGoogle Scholar
- 36.X. Qiu, S. Abdel-Meguid, C. Janson, R. Court, M. Smyth, D. Payne, Protein Sci. 8, 2529 (1999)PubMedPubMedCentralCrossRefGoogle Scholar
- 37.S. Mouilleron, M.A. Badet-Denisot, B. Golinelli-Pimpaneau, J. Mol. Biol. 377(4), 1174–1185 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
- 38.W. Geary, Coord. Chem. Rev. 81, 7 (1971)Google Scholar
- 39.F.A. Saad, J.H. Al-Fahemi, H. El-Ghamry, A.M. Khedr, M.G. Elghalban, N.M. El-Metwaly, J. Therm. Anal. Calorim. 131, 1249–1267 (2018)CrossRefGoogle Scholar
- 40.A.Z. Sonbati, G.G. Mohamed, A.A. Bindary, W.M.I. Hassan, M.A. Diab, S.M. Morgan, A.K. Elkholy, J. Mol. Liq. 212, 487–502 (2015)CrossRefGoogle Scholar
- 41.M.S. Masoud, S.S. Hagagg, Alaa E. Ali, N.M. Nsar, J. Mol. Struct. 1014, 17–25 (2012)CrossRefGoogle Scholar
- 42.X. He, J.J. Liu, H.M. Guo, M. Shao, M.X. Li, Polyhedron 29, 1062 (2010)CrossRefGoogle Scholar
- 43.K.Y. El-Baredie, Monatsh. Chem. 136, 1139 (2005)CrossRefGoogle Scholar
- 44.H. Liu, H. Wang, F. Gao, D. Niu, Z. Lu, J. Coord. Chem. 60, 2671–2678 (2007)CrossRefGoogle Scholar
- 45.N. Venugopal, G. Krishnamurthy, H.S. Bhojyanaik, M. Giridhar, J. Mol. Struct. 1191, 85–94 (2019)CrossRefGoogle Scholar
- 46.D.N. Sathyanarayana, Electronic Absorption Spectroscopy and Related Technique (University Press (India), Hyderabad, 2001)Google Scholar
- 47.Song H, Chen K, Tian, H, Dyes Pigm. 53, 257–262 (2002)CrossRefGoogle Scholar
- 48.N. Lotfi, I. Sheikhshoaei, S.Y. Ebrahimipour, H. Krautscheid, J. Mol. Struct. 432, 1149 (2017)Google Scholar
- 49.W.H. Mahmoud, N.F. Mahmoud, G.G. Mohamed, Appl. Organomet. Chem. 1, 31 (2017)Google Scholar
- 50.I. Fleming, Frontier Orbitals and Organic Chemical Reactions (Wiley, New York, 1976)Google Scholar
- 51.W.H. Mahmoud, R.G. Deghadi, G.G. Mohamed, J. Therm. Anal. Calorim. 127(3), 2149 (2016)CrossRefGoogle Scholar
- 52.P. Thanikaivelan, V. Subramanian, J.R. Rao, B.U. Nair, Chem. Phys. Lett. 59, 323 (2000)Google Scholar
- 53.K. Dhahagani, M.P. Kesavan, G.G.V. Kumar, L. Ravi, G. Rajagopal, J. Rajesh, Mater. Sci. Eng. (2018). https://doi.org/10.1016/j.msec.2018.04.032 CrossRefGoogle Scholar
- 54.N. Deepika, Y.P. Kumar, C.S. Devi, P.V. Reddy, A. Srishailam, S. Satyanarayana, J. Biol. Inorg. Chem. (2013). https://doi.org/10.1007/s00775-013-1018-0 CrossRefPubMedGoogle Scholar
- 55.J. Chen, X. Wang, Y. Shao, J. Zhu, Y. Zhu, Y. Li, Q. Xu, Z.J. Guo, Inorg. Chem. 46, 3306–3312 (2007)PubMedCrossRefGoogle Scholar
- 56.R. Ramesh, S. Maheswaran, J. Inorg. Biochem. 9, 457–462 (2003)CrossRefGoogle Scholar
- 57.K.R. Sangeetha Gowda, H.S. Bhojya Naik, B. Vinay-Kumar, C.N. Sudhamani, H.V. Sudeep, T.R. Ravikumar Naik, G. Krishnamurthy, Spectrochim. Acta A. 105, 229–237 (2013)CrossRefGoogle Scholar
- 58.N. Dharmaraj, P. Viswanathamurthi, K. Nataraj, Trans. Met. Chem. 26, 105–109 (2001)CrossRefGoogle Scholar
- 59.A.G. Bharathi Dileepan, T. Daniel Prakash, A. Ganesh Kumar, P. Shameela Rajam, V. Violet Dhayabaran, R. Rajaram, J. Photochem. Photobiol. Sci. (2018). https://doi.org/10.1016/j.jphotobiol.2018.04.029 CrossRefGoogle Scholar
- 60.M.A. Gyamfi, M. Yonamine, Y. Aniya, Gen. Pharmacol. 32, 661–667 (1999)CrossRefGoogle Scholar
- 61.G. Marinova, V. Batchvarov, Bulg. J. Agric. Sci. 17, 11–24 (2011)Google Scholar
- 62.T. Manjuraj, G. Krishnamurthy, Y.D. Bodke, H.S. Bhojya-Naik, J. Mol. Struct. 1148, 231–237 (2017)CrossRefGoogle Scholar
- 63.B. Koohshekan, A. Divsalar, M. Saiedifar, A.A. Saboury, B. Ghalandari, A. Gholamian, A. Seyedarabi, J. Mol. Liq. 216, 8–15 (2016)CrossRefGoogle Scholar