Synthesis, Crystal Structures, Thermal Stability and Luminescent Properties of Manganese(II) Complex

  • Li YanEmail author
  • Xue Meng
  • Wei Liu
  • Wei Li
  • Mi-Jia Wang
  • Yue Xu
  • Ke-Zhuo Shi


We synthesized a new ligand, 2-(3-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (mip), by modifying 1,10-phenanthroline. Then, by coordination of mip and rigid terephthalic acid (bdc) as a mixed ligand, we produced the manganese complex [Mn(mip)2(bdc)2]n. The structure of the complex was analyzed by single-crystal X-ray diffraction (XRD), and the complex was characterized by elemental analysis, XRD, thermogravimetric analysis, and infrared spectroscopy. The complex had a one-dimensional chain structure, and a two-dimensional layered structure was formed by the action of the hydrogen bond. It had good thermal stability, and its thermal weight loss curve showed weight loss in each temperature interval. Finally, we studied the fluorescence properties of the complex.


Manganese complex Crystal structure Thermal stability analysis Fluorescence 



We thank the National Natural Science Foundation of China (No. 21878120) for financial support, and Joshua Yearsley, MS, from Liwen Bianji, Edanz Group China (, for editing the English text of a draft of this manuscript.


The project was supported by National Natural Science Foundation of China (No. 21878120).


  1. 1.
    R.G. Chaudhary, H.D. Juneja, M.P. Gharpure, J. Therm. Anal. Calorim. 112, 637–647 (2013)CrossRefGoogle Scholar
  2. 2.
    R. Bagade, R.G. Chaudhary, A. Potbhare, A. Mondal, M. Desimone, K. Dadure, R. Mishra, H.D. Juneja, Chem. Select. 31, 6233–6244 (2019)Google Scholar
  3. 3.
    Y.J. Cui, J. Zhang, H.J. He, G.D. Qian, Chem. Soc. Rev. 47, 5740–5785 (2018)CrossRefGoogle Scholar
  4. 4.
    H.H. Meng, X.L. Xia, Z.G. Lin, X.Q. Song, J. Inorg. Organomet. Polym. Mater. 29, 1995–2002 (2019)CrossRefGoogle Scholar
  5. 5.
    S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 43, 2334–2375 (2004)CrossRefGoogle Scholar
  6. 6.
    S. Noro, R. Kitaura, M. Kondo, S. Kitagawa, T. Ishii, H. Matsuzaka, M. Yamashita, J. Am. Chem. Soc. 124, 2568–2583 (2002)CrossRefGoogle Scholar
  7. 7.
    F. Yang, Y.X. Ren, D.S. Li, F. Fu, G.C. Qi, Y.Y. Wang, J. Mol. Struct. 892, 283–288 (2008)CrossRefGoogle Scholar
  8. 8.
    Z.M. Chen, Y.L. Feng, Y.Q. Yang, W. Li, Z.J. Yi, M.S. Chen, Chinese. J. Struct. Chem. 31, 1803–1809 (2012)Google Scholar
  9. 9.
    R.G. Chaudhary, H.D. Juneja, M.P. Gharpure, J. Chin. Adv. Mater. Soc. 1, 121–133 (2013)CrossRefGoogle Scholar
  10. 10.
    R.G. Chaudhary, H.D. Juneja, N.V. Gandhare, J. Chin. Adv. Mater. Soc. 1, 305–316 (2013)CrossRefGoogle Scholar
  11. 11.
    S.S. Bhuyar, H.D. Juneja, L.J. Paliwal, R.G. Chaudhary, J. Chin. Adv. Mater. Soc. 3, 17–31 (2015)CrossRefGoogle Scholar
  12. 12.
    G.M. Sheldrick, SHELXS 97, Program for the Solution of Crystal Structure (University of Göttingen, Göttingen, 1997)Google Scholar
  13. 13.
    G.M. Sheldrick, SHELXS 97, Program for the Refinement of Crystal Structure (University of Göttingen, Göttingen, 1997)Google Scholar
  14. 14.
    S.S. Bhuyar, S.S. Kharkale-Bhuyar, R.G. Chaudhary, N.V. Gandhare, H.D. Juneja, L.J. Paliwal, J. Chin. Adv. Mater. Soc. 3, 287–299 (2015)CrossRefGoogle Scholar
  15. 15.
    A.R. Oki, P.R. Bommarreddy, H.M. Zhang, N. Hosmane, Inorg. Chim. Acta 231, 109–114 (1995)CrossRefGoogle Scholar
  16. 16.
    G. Li, H.W. Hou, Y.Y. Niu, Y.T. Fan, Z.S. Liu, T.Z. Ge, X.Q. Xin, Inorg. Chim. Acta 332, 216–222 (2002)CrossRefGoogle Scholar
  17. 17.
    X.M. Zhang, X.B. Li, E.Q. Gao, J. Coord. Chem. 64, 244–255 (2011)CrossRefGoogle Scholar
  18. 18.
    M. Corbella, V. Gómez, B. Garcia, E. Rodriguez, B. Albela, M.A. Maestro, Inorg. Chim. Acta 376, 456–462 (2011)CrossRefGoogle Scholar
  19. 19.
    A.R. Biju, M.V. Rajasekharan, J. Mol. Struct. 875, 456–461 (2008)CrossRefGoogle Scholar
  20. 20.
    S.H. Zhang, C. Feng, J. Mol. Struct. 977, 65–78 (2010)CrossRefGoogle Scholar
  21. 21.
    J.P. Geng, Z.X. Wang, Q.F. Wu et al., Z. Anorg. Allg. Chem. 637, 301–305 (2011)Google Scholar
  22. 22.
    T.T. Cao, Y. Ma, C. Yang et al., Z. Anorg. Allg. Chem. 636, 2704–2708 (2010)CrossRefGoogle Scholar
  23. 23.
    S.M. Fang, D.L. Peng, M. Chen, L.R. Jia, M. Hu, J. Coord. Chem. 65, 668–680 (2012)CrossRefGoogle Scholar
  24. 24.
    K. Akhbari, A. Morsali, J. Coord. Chem. 64, 3521–3530 (2011)CrossRefGoogle Scholar
  25. 25.
    R.G. Chaudhary, M.P. Gharpure, H.D. Juneja, Int. J. Appl. Biol. Pharm. Technol. 3, 88–98 (2012)Google Scholar
  26. 26.
    R.G. Chaudhary, H.D. Juneja, R. Pagadala, N.V. Gandhare, M.P. Gharpure, J. Saudi Chem. Soc. 19, 442–453 (2015)CrossRefGoogle Scholar
  27. 27.
    R.G. Chaudhary, J.A. Tanna, N.V. Gandhare, M.B. Bagade, S.S. Bhuyar, M.P. Gharpure, H.D. Juneja, J. Chin. Adv. Mater. Soc. 3, 177–187 (2015)CrossRefGoogle Scholar
  28. 28.
    W. Wu, S. Lv, X. Liu, Z. Zhang, G. Tang, G. Song, J. Therm. Anal. Calorim. 118, 1569–1575 (2014)CrossRefGoogle Scholar
  29. 29.
    C.H. Chen, J.M. Shi, Coord. Chem. Rev. 171, 161–174 (1998)CrossRefGoogle Scholar
  30. 30.
    S. Mizukami, H. Houjou, K. Sugaya, E. Koyama, H. Tokuhisa, T. Sasaki, M. Kanesato, Chem. Mater. 17, 50–56 (2005)CrossRefGoogle Scholar
  31. 31.
    Y.X. Chi, S.Y. Niu, J. Jin, L.P. Sun, G.D. Yang, L. Ye, Z. Anorg. Allg. Chem. 633, 1274–1278 (2007)CrossRefGoogle Scholar
  32. 32.
    X.L. Chen, J.J. Wang, H.M. Hu, F. Fu, H.M. Shu, M.L. Yang, G.L. Xue, C.Q. Du, Y.J. Yao, Z. Anorg, Allg. Chem. 633, 2053–2058 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Li Yan
    • 1
    Email author
  • Xue Meng
    • 1
  • Wei Liu
    • 2
  • Wei Li
    • 1
  • Mi-Jia Wang
    • 1
  • Yue Xu
    • 1
  • Ke-Zhuo Shi
    • 1
  1. 1.Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of EducationJilin Normal UniversitySipingChina
  2. 2.College of Computer ScienceJilin Normal UniversitySipingChina

Personalised recommendations