Synthesis of Helical and Straight Carbon Nanofibers on Water Soluble Sodium Chloride Supported Catalyst

  • Hamideh Radnia
  • Alimorad RashidiEmail author
  • Ali Reza Solaimany NazarEmail author


Carbon nanofibers are synthesised via chemical vapour deposition of acetylene as carbon source through using water soluble catalysts. The new water soluble catalyst is prepared by supporting the copper on sodium chloride salt. Copper acetate and copper nitrate salts are used for preparing catalysts through impregnation method. The yield of carbon deposits using the catalyst prepared by copper acetate is almost twenty times higher than the one prepared by copper nitrate precursor. The X-ray diffraction pattern and field emission scanning electron microscopy (FESEM) images confirm the formation of CuO in the catalyst after calcination process. The growth time for carbon material is 15 min. The FESEM images show the growth of helical and straight carbon nanofibers on the catalysts with metal loading of 5 wt% at 600, 650 and 680 °C. The results showed that the morphology of the carbon deposited on the catalyst depends on both the amount of metal loaded on the catalyst and reaction temperature, while there is a significant interaction between them. However, fishbone carbon nanofibers with diameters less than 100 nm are deposited on the catalysts with metal loading of 1 wt% at 650 °C.


Carbon nanofibers Chemical vapour deposition Copper acetate Sodium chloride support 


Supplementary material

10904_2019_1381_MOESM1_ESM.docx (118 kb)
Supplementary material 1 (DOCX 118 kb)


  1. 1.
    Y. Huang, L. Peng, Y. Liu, G. Zhao, J.Y. Chen, G. Yu, A.C.S. Appl, Mater. Interfaces 8, 15205 (2016)CrossRefGoogle Scholar
  2. 2.
    T. Yan, Z. Wang, Y.-Q. Wang, Z.-J. Pan, Mater. Design 143, 214 (2018)CrossRefGoogle Scholar
  3. 3.
    S.H. Chung, P. Han, R. Singhal, V. Kalra, A. Manthiram, Adv. Energy Mater. 5, 1500738 (2015)CrossRefGoogle Scholar
  4. 4.
    R. Singhal, S.-H. Chung, A. Manthiram, V. Kalra, J. Mater. Chem. A 3, 4530 (2015)CrossRefGoogle Scholar
  5. 5.
    Z. He, M. Li, Y. Li, J. Zhu, Y. Jiang, W. Meng, H. Zhou, L. Wang, L. Dai, Electrochim. Acta 281, 601 (2018)CrossRefGoogle Scholar
  6. 6.
    A.D. Kiadehi, A. Rahimpour, M. Jahanshahi, A.A. Ghoreyshi, J. Ind. Eng. Chem. 22, 199 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Wu, W. Ni, J. Hu, J. Ma, Nano-Micro Letters 11, 44 (2019)CrossRefGoogle Scholar
  8. 8.
    B. Xu, S. Qi, P. He, J. Ma, Chem. Asian J. 14, 2925 (2019)CrossRefGoogle Scholar
  9. 9.
    Y. Manawi, A. Samara, T. Al-Ansari, M. Atieh, Materials 11, 1 (2018)CrossRefGoogle Scholar
  10. 10.
    L. Guevara, R. Welsh, M. Atwater, Metals 8, 1 (2018)CrossRefGoogle Scholar
  11. 11.
    W.A.W.A.K. Silas, W.A. Ghani, T.S. Choong, U. Rashid, Catal. Rev. 61, 134 (2019)CrossRefGoogle Scholar
  12. 12.
    J. Almirón, H. Alcazar, R. Churata, F. Roudet, K. Ziouche, D. Chicot, Mater. Res. Express 5, 1 (2018)CrossRefGoogle Scholar
  13. 13.
    A. Szabó, D. Méhn, Z. Kónya, A. Fonseca, J.B. Nagy, PhysChemComm 6, 40 (2003)CrossRefGoogle Scholar
  14. 14.
    S.Y. Brichka, L.Y. Kotel, G. Prikhod’ko, A. Brichka, Russ. J. Appl. Chem. 79, 1278 (2006)CrossRefGoogle Scholar
  15. 15.
    J.H.T. Ooi, W.-W. Liu, V. Thota, A.R. Mohamed, S.-P. Chai, Physica E 43, 1011 (2011)CrossRefGoogle Scholar
  16. 16.
    R. Rajarao, B.R. Bhat, Nanomater. Nanotechnol. 2, 1 (2012)CrossRefGoogle Scholar
  17. 17.
    E.S. Steigerwalt, C. Lukehart, J. Nanosci. Nanotechnol. 2, 25 (2002)CrossRefGoogle Scholar
  18. 18.
    J. Geng, I.A. Kinloch, C. Singh, V.B. Golovko, B.F. Johnson, M.S. Shaffer, Y. Li, A.H. Windle, J. Phys. Chem. B 109, 16665 (2005)CrossRefGoogle Scholar
  19. 19.
    Y. Qin, Y. Zhang, X. Sun, Microchim. Acta 164, 425 (2009)CrossRefGoogle Scholar
  20. 20.
    M. Jia, Y. Zhang, Mater. Lett. 63, 2111 (2009)CrossRefGoogle Scholar
  21. 21.
    R. Ravindra, B.R. Bhat, J. Nanopart. Res. 14, 656 (2012)CrossRefGoogle Scholar
  22. 22.
    M.A. Davoodi, J. Towfighi, A. Rashidi, Chem. Eng. J. 221, 159 (2013)CrossRefGoogle Scholar
  23. 23.
    A. Eftekhari, P. Jafarkhani, F. Moztarzadeh, Carbon 44, 1343 (2006)CrossRefGoogle Scholar
  24. 24.
    I.V. Krasnikova, I.V. Mishakov, A.A. Vedyagin, P.V. Krivoshapkin, D.V. Korneev, Compos. Commun. 7, 65 (2018)CrossRefGoogle Scholar
  25. 25.
    M.S. Maubane, S.S. Bhoware, A. Shaikjee, N.J. Coville, Diamond Relat. Mater. 72, 53 (2017)CrossRefGoogle Scholar
  26. 26.
    K.K. Taha, M. Elamin, B.Y. Abdulkhair, J. Porous Mater. 26, 525 (2019)CrossRefGoogle Scholar
  27. 27.
    K.M. Rambau, N.M. Musyoka, N. Manyala, J. Ren, H.W. Langmi, M.K. Mathe, J. Environ. Sci. Health A 53, 1115 (2018)CrossRefGoogle Scholar
  28. 28.
    A.A. Silva, R.A. Pinheiro, V.J. Trava-Airoldi, E.J. Corat, Fuller. Nanotub. Carbon Nanostruct. 26, 315 (2018)CrossRefGoogle Scholar
  29. 29.
    F. Hassani, H. Tavakol, Fuller. Nanotub. Carbon Nanostruct. 26, 479 (2018)CrossRefGoogle Scholar
  30. 30.
    N. Candela, F. Calvo-Castañera, A. Maroto-Valiente, J. Alvarez-Rodríguez, Powder Metall. 60, 345 (2017)CrossRefGoogle Scholar
  31. 31.
    P. Trogadas, V. Ramani, P. Strasser, T.F. Fuller, M.O. Coppens, Angew. Chem. Int. Ed. 55, 122 (2016)CrossRefGoogle Scholar
  32. 32.
    Y. Tuo, X. Liu, L. Shi, L. Yang, P. Li, W. Yuan, Catal. Today (2018). CrossRefGoogle Scholar
  33. 33.
    J. Díez-Ramírez, P. Sánchez, A. Rodríguez-Gómez, J.L. Valverde, F. Dorado, Ind. Eng. Chem. Res. 55, 3556 (2016)CrossRefGoogle Scholar
  34. 34.
    S. Manafi, S.H. Badiee, S. Joughehdoust, Int. J. Nanomanuf. 5, 106 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemical Engineering DepartmentUniversity of IsfahanIsfahanIran
  2. 2.Nanotechnology Research CenterResearch Institute of Petroleum Industry (RIPI)TehranIran

Personalised recommendations