Degradation of Abiotic Orange II Dye and Biotic E. coli by Highly Porous SiC-AgCl/Ag0 Photocatalyst

  • Jian-Hua Weng
  • Po-Ching Lee
  • Yi-Sheng Chen
  • C. B. LinEmail author


An innovative procedure of producing highly porous SiC-AgCl/Ag0 photocatalyst were developed and tested for durability and degradability of abiotic material (azo dye, Orange II) and biotic material (bacterial, E. coli). Porous photocatalyst were made by 90% porosity silicon carbide in liquid nitrogen, coating with silver nitrate and precipitating out the non-homogeneous phase silver chloride on the surface by emerging the specimen in hydrochloride solution. SEM shows the needle-like nano sized crystal silver chloride were homogeneously crosslink on the silicon carbide backbone. Later on the specimen were heated at 200 °C for 8 h to enhance the adhesion of silver chloride and silicon carbide backbone. Through the XRD analysis under the condition of UV light irradiation, grey-black silver was generated on this porous material. Degradation of Orange II was performed under visible and UV light irradiation and the concentration degradation kinetics follow the first order reaction. Furthermore, the degradability of this photocatalyst which degrades Orange II could persist at least 4 cycles been used in our experiment with 96% degradability. Sterilization of Escherichia coli could be completed in 50 min and the degradation kinetics follows the first order reaction as well. The photocatalyst produced in this work not only reduced the cost of consuming too much silver nitrate, but increase the reliability and degradability of contaminant in the water.


Silver chloride Photocatalyst Degradation Sterilization Reliability 



This study was supported by the Ministry of Science and Technology of the Republic of China, Taiwan (MOST 105-2221-E-032-019).


  1. 1.
    C.-C. You, C.-B. Lin, Y.-M. Liang, C.-W. Li, H.-C. Hsueh, J. Appl. Sci. Eng. 18(1), 9 (2015)Google Scholar
  2. 2.
    Yu. Changlin, H. He, X. Liu, J. Zeng, Z. Liu, Chin. J. Catal. 40(8), 1212 (2019)CrossRefGoogle Scholar
  3. 3.
    K. Yang, X. Li, Yu. Changlin, D. Zeng, F. Chen, K. Zhang, W. Huang, H. Ji, Chin. J. Catal. 40(6), 796 (2019)CrossRefGoogle Scholar
  4. 4.
    D. Zeng, K. Yang, Yu. Changlin, F. Chen, X. Li, W. Zhen, H. Liu, Appl. Catal. B 237(5), 449 (2018)CrossRefGoogle Scholar
  5. 5.
    Yu. Changlin, W. Zhen, R. Liu, D. Dionysiou, K. Yang, C. Wang, H. Liu, Appl. Catal. B 209(15), 1 (2017)Google Scholar
  6. 6.
    S. Gu, B. Li, C. Zhao, Y. Xu, J. Alloy. Compd. 509(18), 5677 (2011)CrossRefGoogle Scholar
  7. 7.
    Y. Li, Y. Ding, J. Phys. Chem. C 114(7), 3175 (2010)CrossRefGoogle Scholar
  8. 8.
    P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei, M.-H. Whangbo, Angew. Chem. Int. Ed. 47, 7931 (2008)CrossRefGoogle Scholar
  9. 9.
    N. Kakuta, N. Goto, H. Ohkita, T. Mizushima, J. Phys. Chem. B 103(29), 5917 (1999)CrossRefGoogle Scholar
  10. 10.
    P. Wang, B. Huang, Z. Lou, X. Zhang, X. Qin, Y. Dai, Z. Zheng, X. Wang, Chem. Eur. J. 16(2), 538 (2010)CrossRefGoogle Scholar
  11. 11.
    H. Haefke, R. Mattheis, M. Krohn, Thin Solid Films 195, 225 (1991)CrossRefGoogle Scholar
  12. 12.
    M. Kawashita, S. Tsuneyama, F. Miyaji, T. Kokubo, H. Kozuka, K. Yamamoto, Biomaterials 21(4), 393 (2000)CrossRefGoogle Scholar
  13. 13.
    B. Ma, J. Guo, W.-L. Dai, K. Fan, Appl. Catal. B 130–131(7), 257 (2013)CrossRefGoogle Scholar
  14. 14.
    S. Cheng-Fnag, L. Shiwen, J. Anhui Agric. Sci. 18, 8318 (2009)Google Scholar
  15. 15.
    G. Hodes, G. Calzaferri, Adv. Funct. Mater. 12(9), 501 (2002)CrossRefGoogle Scholar
  16. 16.
    N.D. Burrows, C.R.H. Hale, R.L. Penn, Cryst. Growth Des. 12, 4787 (2012)CrossRefGoogle Scholar
  17. 17.
    G. Bögels, T.M. Pot, H. Meekes, P. Bennema, D. Bollen, Acta Cryst. A53, 84 (1997)CrossRefGoogle Scholar
  18. 18.
    P. Wang, B. Huang, Z. Lou, Chem. Eur. J. 16, 538 (2010)CrossRefGoogle Scholar
  19. 19.
    M. Ramstedt, P. Franklyn, Surf. Interface Anal. 42, 855 (2010)CrossRefGoogle Scholar
  20. 20.
    R. Li, H. Han, F. Zhang, D. Wang, C. Li, Energy Environ. Sci. 7, 1369 (2014)CrossRefGoogle Scholar
  21. 21.
    S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, D. Dash, Nanotechnology 8(22), 225103 (2007)CrossRefGoogle Scholar
  22. 22.
    S. Pal, T.Y. Kyung, W. Kim, J. Nanosci. Nanotechnol. 9(3), 2092 (2009)CrossRefGoogle Scholar
  23. 23.
    W.R. Li, X.B. Xie, Q.S. Shi, H.Y. Zeng, Y.S. Ou-Yang, Y.B. Chen, Appl. Microbiol. Biotechnol. 85(4), 1115 (2010)CrossRefGoogle Scholar
  24. 24.
    S. Cheng-Fang, Z. Qing-Qing, T. Bin, J. Anhui Inst. Mech. Electr. Eng. 1, 23 (2003)Google Scholar
  25. 25.
    H. Ha, J. Payer, Electrochim. Acta 56(7), 2781 (2011)CrossRefGoogle Scholar
  26. 26.
    X. Jin, J. Lu, J. Electroanal. Chem. 542, 85 (2003)CrossRefGoogle Scholar
  27. 27.
    V.I. Birss, C.K. Smith, Eledrochim. Acta. 32(2), 259 (1987)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jian-Hua Weng
    • 1
  • Po-Ching Lee
    • 2
  • Yi-Sheng Chen
    • 1
  • C. B. Lin
    • 1
    Email author
  1. 1.Department of Mechanical and Electro-Mechanical EngineeringTamkang UniversityNew TaipeiTaiwan, ROC
  2. 2.Department of Water Resources and Environmental EngineeringTamkang UniversityNew TaipeiTaiwan, ROC

Personalised recommendations