Advertisement

Liquid Plasma Iodine Doping of Electrochemically Synthesized Polypyrrole to Enhance the Electromagnetic Absorption

  • Miguel Villanueva-Castañeda
  • Celso Hernández-Tenorio
  • Hilda Moreno-Saavedra
  • Ma. Guadalupe Olayo
  • Guillermo J. CruzEmail author
Article
  • 3 Downloads

Abstract

Polypyrrole (PPy) was electrochemically synthesized and doped with plasma glow discharges on a liquid solution with iodine to enhance the electromagnetic absorption and the transference of electrical charges in the polymer. The results indicated that the electromagnetic absorption in the 200–350 nm wavelength interval increased submerging the polymers in the iodine solution; however, when plasma glow discharges were applied, the absorption increased, and additional peaks appeared in the 600–800 nm interval. The electrical conductivity had also an increase of approximately one magnitude order in average with the plasma doping, from 0.0086 to 0.05 S/cm at 50 °C. The activation energy of electromagnetic absorption as a function of wavelength and conductivity as a function of temperature was calculated finding positive and negative values, which suggest different mechanisms of electromagnetic absorption for non-, semi- and conducting polymers promoted by the liquid plasma iodine doping. This kind of plasma doping can also be used to enhance other surface properties in different materials.

Keywords

Polypyrrole Iodine Doping Electrochemical synthesis Plasma 

Notes

Acknowledgement

The authors acknowledge CONACyT in Mexico for the doctor scholarship given to Miguel Villanueva Castañeda.

Compliance with Ethical Standards

Conflict of interest

The authors of this work declare that there is no conflict of interest regarding the publication of this paper.

References

  1. 1.
    A.A.M. Farag, A. Ashery, M.A. Shenashen, Phys B: Cond. Mater. 407, 2404 (2012)CrossRefGoogle Scholar
  2. 2.
    B. Paosawatyanyong, K. Tapaneeyakorn, W. Bhanthumnavin, Surf. Coat. Tech. 204, 3069 (2010)CrossRefGoogle Scholar
  3. 3.
    S.H. Abdulla, I.A. Abbo, Int. J. Electrochem. Sci. 7, 10666 (2012)Google Scholar
  4. 4.
    J. Senthilnathan, K.R. Sanjeeva, M. Yoshimura, J. Mater. Chem. A 2, 3332 (2014)CrossRefGoogle Scholar
  5. 5.
    J. Senthilnathan, Y.F. Liu, K.R. Sanjeeva, M. Yoshimura, Sci. Rep. 4, 4395 (2014)CrossRefGoogle Scholar
  6. 6.
    C.E. Anderson, N.R. Cha, A.D. Lindsay, D.S. Clark, D.B. Graves, Plasma Chem. Plasma Process. 36, 1393 (2016)CrossRefGoogle Scholar
  7. 7.
    M. Vazquez, G.J. Cruz, M.G. Olayo, T. Timoshina, J. Morales, R. Olayo, Polymer 47, 7864 (2006)CrossRefGoogle Scholar
  8. 8.
    J. Morales, M.G. Olayo, G.J. Cruz, R. Olayo, J. Appl. Polym. Sci. 85, 263 (2002)CrossRefGoogle Scholar
  9. 9.
    J.E. Foster, Phys. Plasmas 24, 05550 (2017)CrossRefGoogle Scholar
  10. 10.
    V.T. Borkar, V.T. Dangat, S.L. Bonde, R.P. Bhadane, K. Yadav, Res. J. Chem. Sci. 4, 77 (2014)Google Scholar
  11. 11.
    P. Rumbach, J.P. Clarke, D.B. Go, Phys. Rev. E 95, 053203 (2017)CrossRefGoogle Scholar
  12. 12.
    B.R. Locke, M. Sato, P. Sunka, M.R. Hoffmann, J.S. Chang, Ind. Eng. Chem. Res. 45, 882 (2006)CrossRefGoogle Scholar
  13. 13.
    R. Bastasz, W. Eckstein, J. Nucl. Mater. 290–293, 19 (2001)CrossRefGoogle Scholar
  14. 14.
    D. Wahyu, H. Watanabe, S. Machmudah, T. Kiyan, M. Sasaki, H. Akiyama, M. Goto, Chem. Eng. Process. 61, 51 (2012)CrossRefGoogle Scholar
  15. 15.
    L.M. Gómez, M.G. Olayo, G.J. Cruz, O.G. López-Gracia, M. González-Torres, C. de Jesús, F. González-Salgado, Superficies y Vacío 25, 88 (2012)Google Scholar
  16. 16.
    F. González-Salgado, M.G. Olayo, G. García-Rosales, L.M. Gómez, M. González-Torres, G.J. Cruz, Appl. Phys. A 122, 545 (2016)CrossRefGoogle Scholar
  17. 17.
    S. Roy, S. Mishra, P. Yogi, S.K. Saxena, P.R. Sagdeo, R. Kumar, J. Inorg. Organomet. Polym. (2017).  https://doi.org/10.1007/s10904-017-0680-z CrossRefGoogle Scholar
  18. 18.
    G.J. Cruz, L.M. Gómez, M. Gonzalez-Torres, F. Gonzalez-Salgado, R. Basurto, E. Colín, J.C. Palacios, M.G. Olayo, J. Mater. Sci. 52, 1005 (2017)CrossRefGoogle Scholar
  19. 19.
    T. Hernández, C. Hernández, M. Villanueva-Castañeda, H. Moreno-Saavedra, J.H. Pacheco-Sánchez, MRS Adv. 3, 3839 (2018)CrossRefGoogle Scholar
  20. 20.
    C. Hernández, M. Villanueva-Castañeda, J.N. Balderas-Gutiérrez, H. Moreno-Saavedra, J.H. Pacheco-Sánchez, MRS Adv. 3, 3847 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Miguel Villanueva-Castañeda
    • 1
  • Celso Hernández-Tenorio
    • 1
  • Hilda Moreno-Saavedra
    • 1
  • Ma. Guadalupe Olayo
    • 2
  • Guillermo J. Cruz
    • 2
    Email author
  1. 1.División de Estudios de Posgrado e InvestigaciónTecnológico Nacional de México/Instituto Tecnológico de TolucaMetepecMexico
  2. 2.Departamento de FísicaInstituto Nacional de Investigaciones NuclearesOcoyoacacMexico

Personalised recommendations