Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Recent Advances of Supercritical CO2 in Green Synthesis and Activation of Metal–Organic Frameworks

Abstract

This review considers the recent advancements of using supercritical carbon dioxide (scCO2) in the synthesis and activation of metal-organic frameworks (MOFs). The first section outlines MOF synthesis by scCO2-based methods; pure scCO2 system, and also in conjunction with a co-solvent, auxiliary ligand, expandable solvent or an ionic liquid. This is followed by elaborating on MOF activation techniques that employed scCO2, be it independently or together with thermal activation. The third section considers the effects of scCO2 on MOF and polymer structures. To conclude, projections are made for current researchers in this area to better exploit scCO2 utilization.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

(Reprinted with permission [90] Copyright 2017, American Chemical Society)

Fig. 3

(Reprinted with permission [90] Copyright 2017, American Chemical Society)

Fig. 4

(Reprinted with permission [90] Copyright 2017, American Chemical Society)

Fig. 5

(Reprinted with permission [91] Copyright 2018, Elsevier)

Fig. 6

(Reprinted with permission [101] Copyright 2015, Royal Society of Chemistry)

Fig. 7

(Reprinted with permission [148] Copyright 2015, American Chemical Society)

Fig. 8

(Reprinted with permission [149] Copyright 2017, Nature)

References

  1. 1.

    M. O’Keeffe, M.A. Peskov, S.J. Ramsden, O.M. Yaghi, Chem Res 41, 1782–1789 (2008)

  2. 2.

    G. Ferey, Chem. Soc. Rev. 37, 191–214 (2008)

  3. 3.

    S. Horike, S. Shimomura, S. Kitagawa, Nat. Chem. 1, 695 (2009)

  4. 4.

    O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer, A.A. Sarjeant, R.Q. Snurr, S.T. Nguyen, A.O. Yazaydın, J.T. Hupp, J. Am. Chem. Soc. 134, 15016–15021 (2012)

  5. 5.

    S.T. Meek, J.A. Greathouse, M.D. Allendorf, Adv. Mater. 23, 249–267 (2011)

  6. 6.

    G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, Science 309, 2040–2042 (2005)

  7. 7.

    K.A. Cychosz, R. Ahmad, A.J. Matzger, Chem. Sci. 1, 293–302 (2010)

  8. 8.

    J.E. Bachman, Z.P. Smith, T. Li, T. Xu, J.R. Long, Nat. Mater. 15, 845–849 (2016)

  9. 9.

    X. Cui, K. Chen, H. Xing, Q. Yang, R. Krishna, Z. Bao, H. Wu, W. Zhou, X. Dong, Y. Han, B. Li, Q. Ren, M.J. Zaworotko, B. Chen, Science 353, 141–144 (2016)

  10. 10.

    P. Nugent, Y. Belmabkhout, S.D. Burd, A.J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi, M.J. Zaworotko, Nature 495, 44–80 (2013)

  11. 11.

    J.R. Li, J. Sculley, H.C. Zhou, Chem. Rev. 112, 869–932 (2012)

  12. 12.

    Z.R. Herm, E.D. Bloch, J.R. Long, Chem. Mater. 26, 323–338 (2013)

  13. 13.

    S. Ma, D. Sun, X.S. Wang, H.C. Zhou, Angew. Chem. Int. Ed. Engl. 46, 2458–2462 (2007)

  14. 14.

    J.R. Li, R.J. Kuppler, H.C. Zhou, Chem. Soc. Rev. 38, 1477–1504 (2009)

  15. 15.

    J.A. Mason, M. Veenstra, J.R. Long, Chem. Sci. 5, 32–51 (2014)

  16. 16.

    Y. Peng, V. Krungleviciute, I. Eryazici, J.T. Hupp, O.K. Farha, T. Yildirim, J. Am. Chem. Soc. 135, 11887–11894 (2013)

  17. 17.

    T.M. McDonald, J.A. Mason, X. Kong, E.D. Bloch, D. Gygi, A. Dani, V. Crocellà, F. Giordanino, S.O. Odoh, W.S. Drisdell, B. Vlaisavljevich, A.L. Dzubak, R. Poloni, S.K. Schnell, N. Planas, K. Lee, T. Pascal, L.F. Wan, D. Prendergast, J.B. Neaton, B. Smit, J.B. Kortright, L. Gagliardi, S. Bordiga, J.A. Reimer, J.R. Long, Nature 519, 303 (2015)

  18. 18.

    M. Latroche, S. Surble, C. Serre, C. Mellot-Draznieks, P.L. Llewellyn, J.H. Lee, J.S. Chang, S.H. Jhung, G. Ferey, Angew. Chem. Int. Ed. Engl. 45, 8227–8231 (2006)

  19. 19.

    S. Ma, D. Sun, J.M. Simmons, C.D. Collier, D. Yuan, H.-C. Zhou, J. Am. Chem. Soc. 130, 1012–1016 (2008)

  20. 20.

    L. Pan, M.B. Sander, X. Huang, J. Li, M. Smith, E. Bittner, B. Bockrath, J.K. Johnson, J. Am. Chem. Soc. 126, 1308–1309 (2004)

  21. 21.

    D.K. Panchariya, R.K. Rai, E.A. Kumar, S.K. Singh, J. Porous Mater. 26, 1137–1147 (2019)

  22. 22.

    K. Akhbari, A. Morsali, Dalton Trans. 42, 4786–4789 (2013)

  23. 23.

    K. Akhbari, A. Morsali, Mater. Lett. 141, 315–318 (2015)

  24. 24.

    J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Chem. Soc. Rev. 38, 1450–1459 (2009)

  25. 25.

    J.M. Falkowski, S. Liu, W. Lin, Israel J. Chem. 52, 591–603 (2012)

  26. 26.

    L.G. Qiu, A.J. Xie, L.D. Zhang, Adv. Mater. 17, 689–692 (2005)

  27. 27.

    P.M. Forster, A.K. Cheetham, Top. Catal. 24, 79–86 (2003)

  28. 28.

    L. Alaerts, E. Séguin, H. Poelman, F. Thibault-Starzyk, P.A. Jacobs, D.E. De Vos, Chem. Eur. J. 12, 7353–7363 (2006)

  29. 29.

    P. Horcajada, S. Surblé, C. Serre, D.-Y. Hong, Y.-K. Seo, J.-S. Chang, J.-M. Grenèche, I. Margiolaki, G. Férey, Chem. Commun. (2007). https://doi.org/10.1039/B704325B

  30. 30.

    S. Zhao, J. Chen, J. Porous Mater. 26, 1–7 (2019)

  31. 31.

    Z. Hu, B.J. Deibert, J. Li, Chem. Soc. Rev. 43, 5815–5840 (2014)

  32. 32.

    L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Chem. Rev. 112, 1105–1125 (2011)

  33. 33.

    P. Kumar, K.-H. Kim, A. Saneja, B. Wang, M. Kukkar, J. Porous Mater. 26, 655–675 (2018)

  34. 34.

    L. Sun, M.G. Campbell, M. Dinca, Angew. Chem. Int. Ed. Engl. 55, 3566–3579 (2016)

  35. 35.

    G. Férey, F. Millange, M. Morcrette, C. Serre, M.L. Doublet, J.M. Grenèche, J.M. Tarascon, Angew. Chem. Int. Ed. Engl. 46, 3259–3263 (2007)

  36. 36.

    Z. Neisi, Z. Ansari-Asl, A.S. Dezfuli, J. Inorg. Organomet. Polym. Mater. 29, 1838–1847 (2019)

  37. 37.

    M.C. So, G.P. Wiederrecht, J.E. Mondloch, J.T. Hupp, O.K. Farha, Chem. Commun. 51, 3501–3510 (2015)

  38. 38.

    D.E. Williams, N.B. Shustova, Chem. Eur. J. 21, 15474–15479 (2015)

  39. 39.

    P. Kumar, V. Bansal, A. Deep, K.-H. Kim, J. Porous Mater. 22, 413–424 (2015)

  40. 40.

    X. Zhao, X. Bu, T. Wu, S.-T. Zheng, L. Wang, P. Feng, Nat. Commun. 4, 2344 (2013)

  41. 41.

    Y. Noori, K. Akhbari, RSC Adv. 7, 1782–1808 (2017)

  42. 42.

    M. Vallet-Regí, F. Balas, D. Arcos, Angew. Chem. Int. Ed. Engl. 46, 7548–7558 (2007)

  43. 43.

    P. Horcajada, C. Serre, G. Maurin, N.A. Ramsahye, F. Balas, M.A. Vallet-Regí, M. Sebban, F. Taulelle, G.R. Férey, J. Am. Chem. Soc. 130, 6774–6780 (2008)

  44. 44.

    P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, Angew. Chem. Int. Ed. Engl. 45, 5974–5978 (2006)

  45. 45.

    R.C. Huxford, J. DellaRocca, W. Lin, Curr. Opin. Chem. Biol. 14, 262–268 (2010)

  46. 46.

    J. DeCoste, G. Peterson, Chem. Rev. 114, 5695–5727 (2014)

  47. 47.

    A.J. Howarth, Y. Liu, J.T. Hupp, O.K. Farha, Cryst. Eng. Comm. 17, 7245–7253 (2015)

  48. 48.

    F. Chai, X. Zhao, H. Gao, Y. Zhao, H. Huang, Z. Gao, J. Inorg. Organomet. Polym Mater. 29, 1305–1313 (2019)

  49. 49.

    M. Faradonbeh, A. Dadkhah, A. Rashidi, S. Tasharrofi, F. Mansourkhani, J. Inorg. Organomet. Polym Mater. 28, 829–836 (2018)

  50. 50.

    E. Mirzadeh, K. Akhbari, Cryst. Eng. Comm. 18, 7410–7424 (2016)

  51. 51.

    M. Moeinian, K. Akhbari, J. Iran. Chem. Soc. 13, 547–552 (2016)

  52. 52.

    M. Moeinian, K. Akhbari, J. Solid State Chem. 225, 459–463 (2015)

  53. 53.

    R.K. Alavijeh, S. Beheshti, K. Akhbari, A. Morsali, Polyhedron 156, 257–278 (2018)

  54. 54.

    V.F. Cheong, P.Y. Moh, Mater. Sci. Technol. 34, 1025–1045 (2018)

  55. 55.

    S. Bauer, C. Serre, T. Devic, P. Horcajada, J. Marrot, G. Ferey, N. Stock, Inorg. Chem. 47, 7568–7576 (2008)

  56. 56.

    H.R. Abid, H. Tian, H.-M. Ang, M.O. Tade, C.E. Buckley, S. Wang, Chem. Eng. J. 187, 415–420 (2012)

  57. 57.

    J. Kim, W.Y. Kim, W.-S. Ahn, Fuel 102, 574–579 (2012)

  58. 58.

    M. Hartmann, S. Kunz, D. Himsl, O. Tangermann, S. Ernst, A. Wagener, Langmuir 24, 8634–8642 (2008)

  59. 59.

    R. Ameloot, L. Pandey, M. Van der Auweraer, L. Alaerts, B.F. Sels, D.E. De Vos, Chem. Commun. 46, 3735–3737 (2010)

  60. 60.

    A.F. Gross, E. Sherman, J.J. Vajo, Dalton Trans. 41, 5458–5460 (2012)

  61. 61.

    J. Cravillon, S. Münzer, S.-J. Lohmeier, A. Feldhoff, K. Huber, M. Wiebcke, Chem. Mater. 21, 1410–1412 (2009)

  62. 62.

    A. Pichon, A. Lazuen-Garay, S.L. James, Cryst. Eng. Comm. 8, 211–214 (2006)

  63. 63.

    T. Friščić, D.G. Reid, I. Halasz, R.S. Stein, R.E. Dinnebier, M.J. Duer, Angew. Chem. 122, 724–727 (2010)

  64. 64.

    H. Yang, S. Orefuwa, A. Goudy, Microporous Mesoporous Mater. 143, 37–45 (2011)

  65. 65.

    M. Hasheminezhad, K. Akhbari, A. Phuruangrat, Polyhedron 166, 115–122 (2019)

  66. 66.

    E. Mirzadeh, K. Akhbari, J. White, Appl. Organomet. Chem. 32, e4313 (2018)

  67. 67.

    M. Moeinian, K. Akhbari, S. Kawata, R. Ishikawa, RSC Adv. 6, 82447–82449 (2016)

  68. 68.

    Z. Moradi, K. Akhbari, F. Costantino, A. Phuruangrat, Polyhedron 121, 33–40 (2017)

  69. 69.

    W.-J. Son, J. Kim, J. Kim, W.-S. Ahn, Chem. Commun. 47, 6336–6338 (2008)

  70. 70.

    D.-W. Jung, D.-A. Yang, J. Kim, J. Kim, W.-S. Ahn, Dalton Trans. 39, 2883–2887 (2010)

  71. 71.

    V. Safarifard, A. Morsali, Coord. Chem. Rev. 292, 1–14 (2015)

  72. 72.

    S. Yusefi, K. Akhbari, J. White, A. Phuruangrat, Appl. Organomet. Chem. 33, e4747 (2019)

  73. 73.

    F. Mohaghegh, K. Akhbari, A. Phuruangrat, Ultrason. Sonochem. 40, 594–600 (2018)

  74. 74.

    Z. Hazrati, K. Akhbari, A. Phuruangrat, Ultrason. Sonochem. 39, 662–668 (2017)

  75. 75.

    F.S. Shirazi, K. Akhbari, Ultrason. Sonochem. 31, 51–61 (2016)

  76. 76.

    Y.-K. Seo, J.W. Yoon, U.-H. Lee, Y.K. Hwang, C.-H. Jun, J.-S. Chang, Microporous Mesoporous Mater. 155, 75–81 (2012)

  77. 77.

    L.A. Blanchard, D. Hancu, E.J. Beckman, J.F. Brennecke, Nature 399, 28 (1999)

  78. 78.

    H. Zhang, J. Long, A.I. Cooper, J. Am. Chem. Soc. 127, 13482–13483 (2005)

  79. 79.

    J. Zhang, B. Han, Acc. Chem. Res. 46, 425–433 (2012)

  80. 80.

    M.J. Cocero, Á. Martín, F. Mattea, S. Varona, J. Supercrit. Fluids 47, 546–555 (2009)

  81. 81.

    M.F. Kemmere, T. Meyer, Polymer Reaction Engineering, 1st edn. (Wiley, Weinheim, 2006), pp. 205–238

  82. 82.

    C.D. Pascual, P. Subra-Paternault, Composites and Hybrid Nanomaterials (Pan Stanford, Singapore, 2015), pp. 59–73

  83. 83.

    C. García-González, A.S. da Sousa, A. Argemí, A.L. Periago, J. Saurina, C. Duarte, C. Domingo, Int. J. Pharm. 382, 296–304 (2009)

  84. 84.

    C. Harscoat-Schiavo, C. Neurohr, S. Lecomte, M. Marchivie, P. Subra-Paternault, Cryst. Eng. Comm. 17, 5410–5421 (2015)

  85. 85.

    F. Placin, J.-P. Desvergne, F. Cansell, J. Mater. Chem. 10, 2147–2149 (2000)

  86. 86.

    J.D. Holmes, D.M. Lyons, K.J. Ziegler, Chem. Eur. J. 9, 2144–2150 (2003)

  87. 87.

    C. Shi, Z. Huang, S. Kilic, J. Xu, R. Enick, E. Beckman, A. Carr, R. Melendez, A. Hamilton, Science 286, 1540–1543 (1999)

  88. 88.

    T. Hoefling, R. Enick, E. Beckman, J. Phys. Chem. 95, 7127–7129 (1991)

  89. 89.

    J. Peach, J. Eastoe, Beilstein J. Org. Chem. 10, 1878–1895 (2014)

  90. 90.

    A.M. López-Periago, N. Portoles-Gil, P. López-Domínguez, J. Fraile, J. Saurina, N. Aliaga-Alcalde, G. Tobias, J.A. Ayllón, C. Domingo, Cryst. Growth Des. 17, 2864–2872 (2017)

  91. 91.

    N. Portolés-Gil, S. Gowing, O. Vallcorba, C. Domingo, A.M. López-Periago, J.A. Ayllón, J. CO2 Util. 24, 444–453 (2018)

  92. 92.

    A. Lopez-Periago, O. Vallcorba, C. Frontera, C. Domingo, J.A. Ayllon, Dalton Trans. 44, 7548–7553 (2015)

  93. 93.

    J. Hwang, R. Yan, M. Oschatz, B.V. Schmidt, J. Mater. Chem. A 6, 23521–23530 (2018)

  94. 94.

    H.-C. Zhang, C.-N. Yu, Y. Liang, G.-X. Lin, C. Meng, Polymers 11, 89 (2019)

  95. 95.

    T. Li, J. Ihli, J.T. Wennmacher, F. Krumeich, J.A. van Bokhoven, Chem. Eur. J. 25(32), 7689–7694 (2019)

  96. 96.

    K.N. Olafson, R. Li, B.G. Alamani, J.D. Rimer, Chem. Mater. 28, 8453–8465 (2016)

  97. 97.

    J. Cravillon, C.A. Schröder, H. Bux, A. Rothkirch, J. Caro, M. Wiebcke, Cryst. Eng. Comm. 14, 492–498 (2012)

  98. 98.

    A. Parulkar, N.A. Brunelli, Ind. Eng. Chem. Res. 56, 10384–10392 (2017)

  99. 99.

    L. Peng, J. Zhang, Z. Xue, B. Han, X. Sang, C. Liu, G. Yang, Nat. Commun. 5, 4465 (2014)

  100. 100.

    H.V. Doan, Y. Fang, B. Yao, Z. Dong, T.J. White, A. Sartbaeva, U. Hintermair, V.P. Ting, Sustain. Chem. Eng. 5, 7887–7893 (2017)

  101. 101.

    H. Yu, D. Xu, Q. Xu, Chem. Commun. 51, 13197–13200 (2015)

  102. 102.

    P. López-Domínguez, A.M. López-Periago, F.J. Fernández-Porras, J. Fraile, G. Tobias, C. Domingo, J. CO2 Util. 18, 147–155 (2017)

  103. 103.

    J. Cravillon, R. Nayuk, S. Springer, A. Feldhoff, K. Huber, M. Wiebcke, Chem. Mater. 23, 2130–2141 (2011)

  104. 104.

    J.M. Marrett, C. Mottillo, S. Girard, C.W. Nickels, J.-L. Do, G. Dayaker, L.S. Germann, R.E. Dinnebier, A.J. Howarth, O.K. Farha, T. Friščić, C.-J. Li, Cryst. Growth Des. 18, 3222–3228 (2018)

  105. 105.

    S. Surblé, C. Serre, C. Mellot-Draznieks, F. Millange, G. Férey, Chem. Commun. 3, 284–286 (2006)

  106. 106.

    P.G. Jessop, B. Subramaniam, Chem. Rev. 107, 2666–2694 (2007)

  107. 107.

    A. Carne, C. Carbonell, I. Imaz, D. Maspoch, Chem. Soc. Rev. 40, 291–305 (2011)

  108. 108.

    A. López-Periago, P. López-Domínguez, J. Pérez Barrio, G. Tobias, C. Domingo, Microporous Mesoporous Mater. 234, 155–161 (2016)

  109. 109.

    Y. Zhao, J. Zhang, B. Han, J. Song, J. Li, Q. Wang, Angew. Chem. Int. Ed. 50, 636–639 (2011)

  110. 110.

    E.R. Parnham, R.E. Morris, Acc. Chem. Res. 40, 1005–1013 (2007)

  111. 111.

    J.-M. Andanson, F. Jutz, A. Baiker, J. Phys. Chem. B 113, 10249–10254 (2009)

  112. 112.

    C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710–712 (1992)

  113. 113.

    J.C.V.J.S. Beck, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. Mccullen, J.B. Higgins, J.L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992)

  114. 114.

    D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279, 548–552 (1998)

  115. 115.

    Y. Han, D. Zhang, L.L. Chng, J. Sun, L. Zhao, X. Zou, J.Y. Ying, Nat. Chem. 1, 123 (2009)

  116. 116.

    R.A. Pai, R. Humayun, M.T. Schulberg, A. Sengupta, J.-N. Sun, J.J. Watkins, Science 303, 507–510 (2004)

  117. 117.

    K.P. Johnston, K.L. Harrison, M.J. Clarke, S.M. Howdle, M.P. Heitz, F.V. Bright, C. Carlier, T.W. Randolph, Science 271, 624 (1996)

  118. 118.

    Q.M. Wang, D. Shen, M. Bülow, M.L. Lau, S. Deng, F.R. Fitch, N.O. Lemcoff, J. Semanscin, Microporous Mesoporous Mater. 55, 217–230 (2002)

  119. 119.

    M.-H. Pham, G.T. Vuong, F.D.R.-G. Fontaine, T.-O. Do, Cryst. Growth Des. 12, 1008–1013 (2011)

  120. 120.

    T. Tsuruoka, S. Furukawa, Y. Takashima, K. Yoshida, S. Isoda, S. Kitagawa, Angew. Chem. Int. Ed. Engl. 48, 4739–4743 (2009)

  121. 121.

    J. Zhang, B. Han, J. Liu, X. Zhang, J. He, Z. Liu, T. Jiang, G. Yang, Chem. Eur. J. 8, 3879–3883 (2002)

  122. 122.

    S.-D. Yeo, E. Kiran, J. Supercrit. Fluids 34, 287–308 (2005)

  123. 123.

    J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, J. Am. Chem. Soc. 130, 13850–13851 (2008)

  124. 124.

    J.-Y. Zou, L. Li, S.-Y. You, Y.-W. Liu, H.-M. Cui, K.-H. Chen, S.-W. Zhang, J. Inorg. Organomet. Polym Mater. 29, 359–364 (2018)

  125. 125.

    Y.-P. He, Y.-X. Tan, J. Zhang, Inorg. Chem. 51, 11232–11234 (2012)

  126. 126.

    N. Sahiner, S. Demirci, M. Yildiz, J. Inorg. Organomet. Polym Mater. 27, 1–9 (2017)

  127. 127.

    J.E. Mondloch, W. Bury, D. Fairen-Jimenez, S. Kwon, E.J. DeMarco, M.H. Weston, A.A. Sarjeant, S.T. Nguyen, P.C. Stair, R.Q. Snurr, J. Am. Chem. Soc. 135, 10294–10297 (2013)

  128. 128.

    K.M. Elsabawy, A.M. Fallatah, J. Inorg. Organomet. Polym Mater. 28, 2865–2870 (2018)

  129. 129.

    J.E. Mondloch, O. Karagiaridi, O.K. Farha, J.T. Hupp, Cryst. Eng. Comm. 15, 9258–9264 (2013)

  130. 130.

    A.P. Nelson, O.K. Farha, K.L. Mulfort, J.T. Hupp, J. Am. Chem. Soc. 131, 458–460 (2008)

  131. 131.

    O.K. Farha, J.T. Hupp, Acc. Chem. Res. 43, 1166–1175 (2010)

  132. 132.

    K. Koh, J.D. Van Oosterhout, S. Roy, A.G. Wong-Foy, A.J. Matzger, Chem. Sci. 3, 2429–2432 (2012)

  133. 133.

    B. Liu, A.G. Wong-Foy, A.J. Matzger, Chem. Commun. 49, 1419–1421 (2013)

  134. 134.

    H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.Ö. Yazaydin, R.Q. Snurr, M. O’Keeffe, J. Kim, Science 329, 424–428 (2010)

  135. 135.

    Z. Xiang, D. Cao, X. Shao, W. Wang, J. Zhang, W. Wu, Chem. Eng. Sci. 65, 3140–3146 (2010)

  136. 136.

    S.T. Meek, J.J. Perry, S.L. Teich-McGoldrick, J.A. Greathouse, M.D. Allendorf, Cryst. Growth Des. 11, 4309–4312 (2011)

  137. 137.

    O.K. Farha, A.Ö. Yazaydın, I. Eryazici, C.D. Malliakas, B.G. Hauser, M.G. Kanatzidis, S.T. Nguyen, R.Q. Snurr, J.T. Hupp, Nat. Chem. 2, 944 (2010)

  138. 138.

    D. Han, F.-L. Jiang, M.-Y. Wu, L. Chen, Q.-H. Chen, M.-C. Hong, Chem. Commun. 47, 9861–9863 (2011)

  139. 139.

    J. Liu, J.T. Culp, S. Natesakhawat, B.C. Bockrath, B. Zande, S.G. Sankar, G. Garberoglio, J.K. Johnson, J. Phys. Chem. C 111, 9305–9313 (2007)

  140. 140.

    H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Nature 402, 276 (1999)

  141. 141.

    S.H. Jhung, J.H. Lee, J.W. Yoon, C. Serre, G. Férey, J.S. Chang, Adv. Mater. 19, 121–124 (2007)

  142. 142.

    J.Y. Choi, J. Kim, S.H. Jhung, H. Kim, J. Chang, H.K. Chae, Bull-Korean Chem Soc 27, 1523 (2006)

  143. 143.

    Z.R. Herm, J.A. Swisher, B. Smit, R. Krishna, J.R. Long, J. Am. Chem. Soc. 133, 5664–5667 (2011)

  144. 144.

    J.L. Rowsell, A.R. Millward, K.S. Park, O.M. Yaghi, J. Am. Chem. Soc. 126, 5666–5667 (2004)

  145. 145.

    S. Chavan, J.G. Vitillo, M.J. Uddin, F. Bonino, C. Lamberti, E. Groppo, K.-P. Lillerud, S. Bordiga, Chem. Mater. 22, 4602–4611 (2010)

  146. 146.

    A. Dutta, A.G. Wong-Foy, A.J. Matzger, Chem. Sci. 5, 3729–3734 (2014)

  147. 147.

    W.A. Chalifoux, R. McDonald, M.J. Ferguson, R.R. Tykwinski, Angew. Chem. Int. Ed. Engl. 48, 7915–7919 (2009)

  148. 148.

    L.D. Tran, J.I. Feldblyum, A.G. Wong-Foy, A.J. Matzger, Langmuir 31, 2211–2217 (2015)

  149. 149.

    F. Moreau, I. da Silva, N.H. Al Smail, T.L. Easun, M. Savage, H.G.W. Godfrey, S.F. Parker, P. Manuel, S. Yang, M. Schröder, Nat. Commun. 8, 14085 (2017)

  150. 150.

    E.R. Engel, A. Jouaiti, C.X. Bezuidenhout, M.W. Hosseini, L.J. Barbour, Angew. Chem. Int. Ed. Engl. 56, 8874–8878 (2017)

  151. 151.

    P.K. Thallapally, S.J. Dalgarno, J.L. Atwood, J. Am. Chem. Soc. 128, 15060–15061 (2006)

  152. 152.

    J.L. Rowsell, O.M. Yaghi, J. Am. Chem. Soc. 128, 1304–1315 (2006)

  153. 153.

    A.G. Wong-Foy, O. Lebel, A.J. Matzger, J. Am. Chem. Soc. 129, 15740–15741 (2007)

  154. 154.

    S. Kazarian, Polym. Sci. 42, 78–101 (2000)

  155. 155.

    S. Ebnesajjad, Chemical Resistance of Engineering Thermoplastics (Elsevier, Amsterdam, 2016), pp. xiii–xxv

  156. 156.

    E. Kung, A.J. Lesser, T.J. McCarthy, Macromol. 31, 4160–4169 (1998)

  157. 157.

    R.G. Wissinger, M.E. Paulaitis, J. Polym. Sci., Part B: Polym. Phys. 29, 631–633 (1991)

  158. 158.

    W.-C.V. Wang, E.J. Kramer, W.H. Sachse, J. Polym. Sci. Polym. Phys. Ed. 20, 1371–1384 (1982)

  159. 159.

    P. Condo, K.P. Johnston, J. Polym. Sci., Part B: Polym. Phys. 32, 523–533 (1994)

  160. 160.

    T. Miyoshi, K. Takegoshi, T. Terao, Macromol. 30, 6582–6585 (1997)

  161. 161.

    S.G. Kazarian, N.H. Brantley, B.L. West, M.F. Vincent, C.A. Eckert, Appl. Spectrosc. 51, 491–494 (1997)

  162. 162.

    N. Cotton, K. Bartle, A. Clifford, C. Dowle, J. Appl. Polym. Sci. 48, 1607–1619 (1993)

  163. 163.

    M.F. Vincent, S.G. Kazarian, C.A. Eckert, AIChE J. 43, 1838–1848 (1997)

  164. 164.

    S. Lambert, M. Paulaitis, J. Supercrit. Fluids 4, 15–23 (1991)

  165. 165.

    Y.P. Handa, Z. Zhang, J. Roovers, J. Polym. Sci., Part B: Polym. Phys. 39, 1505–1512 (2001)

  166. 166.

    E. Beckman, R.S. Porter, J. Polym. Sci., Part B: Polym. Phys. 25, 1511–1517 (1987)

  167. 167.

    Y.P. Handa, J. Roovers, F. Wang, Macromol. 27, 5511–5516 (1994)

  168. 168.

    Y.P. Handa, Z. Zhang, B. Wong, Macromol. 30, 8499–8504 (1997)

  169. 169.

    M. Takada, S. Hasegawa, M. Ohshima, Polym. Eng. Sci. 44, 186–196 (2004)

  170. 170.

    A. Garg, E. Gulari, C.W. Manke, Macromol. 27, 5643–5653 (1994)

  171. 171.

    L.J. Gerhardt, C.W. Manke, E. Gulari, J. Polym. Sci., Part B: Polym. Phys. 35, 523–534 (1997)

  172. 172.

    M. Lee, C.B. Park, C. Tzoganakis, Polym. Eng. Sci. 39, 99–109 (1999)

  173. 173.

    M.D. Elkovitch, D.L. Tomasko, L.J. Lee, Polym. Eng. Sci. 39, 2075–2084 (1999)

  174. 174.

    A.F. Ismail, W. Lorna, Sep. Purif. Technol. 27, 173–194 (2002)

  175. 175.

    A. Bos, I. Pünt, M. Wessling, H. Strathmann, J. Membr. Sci. 155, 67–78 (1999)

  176. 176.

    X. Guo, H. Huang, Y. Ban, Q. Yang, Y. Xiao, Y. Li, W. Yang, C. Zhong, J. Membr. Sci. 478, 130–139 (2015)

  177. 177.

    S. Shahid, K. Nijmeijer, J. Membr. Sci. 470, 166–177 (2014)

  178. 178.

    E.V. Perez, K.J. Balkus Jr., J.P. Ferraris, I.H. Musselman, J. Membr. Sci. 328, 165–173 (2009)

Download references

Acknowledgements

The authors are thankful for the financial support of the National Natural Science Foundation of China (Grant no. 21576242).

Author information

Correspondence to Baojian Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dapaah, M.F., Liu, B. Recent Advances of Supercritical CO2 in Green Synthesis and Activation of Metal–Organic Frameworks. J Inorg Organomet Polym 30, 581–595 (2020). https://doi.org/10.1007/s10904-019-01354-2

Download citation

Keywords

  • Metal–organic framework
  • Supercritical carbon dioxide (scCO2)
  • Synthesis
  • Activation