Polycaprolactone/Graphene Nanocomposites: Synthesis, Characterization and Mechanical Properties of Electrospun Nanofibers

  • Massoumeh BagheriEmail author
  • Ahad Mahmoodzadeh


In this study, three polymer nanocomposites based on poly(ε-caprolactone) (PCL) grafted on the graphene quantum dot (GQD), hydroxypropyl cellulose (HPC)/GQD (GQD: HPC = 1:1; w/w) and graphene oxide (GO) with 1.6 wt% of ε-caprolactone (CL) were synthesized via in situ ring opening polymerization of CL. The synthesized nanocomposites were characterized using FTIR, 1H NMR, and contact angle measurements. The lowest molecular weight for PCL/GO was obtained according to 1H NMR spectra. Crystalline structure and thermal behavior of composites were investigated by XRD, DSC and TGA. The results showed that the presence of HPC and graphene-based nanofillers in nanocomposite can affect the hydrogen bonding interaction with PCL chains, melting temperature (Tm), degree of crystallinity [Xc(%)] and the size of crystals. According to the results, PCL/GQD-HPC had higher Tm, lower Xc(%), longer PCL moieties and smaller crystals. Also, the TGA results indicated that the nanocomposites were thermally more stable than the pure PCL. Moreover, a conventional electrospinning process was used to prepare nanofibers of synthesized nanocomposites blended with PCL (50:50; w/w). SEM images and mechanical behavior study of obtained nanofibers depicted that the PCL/(PCL/GQD-HPC) nanofibers have a significant increment in the average diameter, tensile modulus and strength in comparison with other composites.


Polycaprolactone Nanocomposites GQD nanoparticles Graphene oxide Electrospinning 



We would like to thank the Vice Chancellor of Research of Azarbaijan Shahid Madani University for financially supporting this research. We would like to thank Dr. Fahimeh Farshi, who helped to consider the approach discussed here and many insightful critical comments. The authors’ warm thanks are also extended to Ms. Veghar Barri, whose suggestions on the English to use in parts of the paper were helpful.

Supplementary material

10904_2019_1340_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1175 kb)


  1. 1.
    X. Wu, S.-J. Ding, K. Lin, J. Su, J. Mater. Chem. B 5, 3084 (2017)CrossRefGoogle Scholar
  2. 2.
    S.A. El-Khodary, G.M. El-Enany, M. El-Okr, M. Ibrahim, Electrochim. Acta 150, 269 (2014)CrossRefGoogle Scholar
  3. 3.
    N.S. Alghunaim, S.A. El-Khodary, M. Ibrahim, G.M. El-Enany, Spectrochim. Acta, Part A 216, 349 (2019)CrossRefGoogle Scholar
  4. 4.
    M. Soylak, D. Acar, E. Yilmaz, S.A. El-Khodary, M. Morsy, M. Ibrahim, J. AOAC Int. 100, 5 (2017)CrossRefGoogle Scholar
  5. 5.
    S.A. El-Khodary, I.S. Yahia, H.Y. Zahran, M. Ibrahim, Phys. B 556, 66 (2019)CrossRefGoogle Scholar
  6. 6.
    O.C. Compton, S.T. Nguyen, Small 6, 711 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    C. Zang, T.X. Liu, Chin. Sci. Bull. 57, 3010 (2012)CrossRefGoogle Scholar
  8. 8.
    A. Kumar, K. Sharma, A.R. Dixit, J. Mater. Sci. 54, 5992 (2019)CrossRefGoogle Scholar
  9. 9.
    M.M. Gudarzi, F. Sharif, Express Polym. Lett. 6, 1017 (2012)CrossRefGoogle Scholar
  10. 10.
    S.Y. Wu, S.S. An, J. Hulme, Int. J. Nanomed. 10, 9 (2015)CrossRefGoogle Scholar
  11. 11.
    M. Bhattacharya, Materials 9, 262 (2016)PubMedCentralCrossRefGoogle Scholar
  12. 12.
    K. Mylvaganam, L.C. Zhang, J. Phys. Chem. C 117, 2817 (2013)CrossRefGoogle Scholar
  13. 13.
    J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L.B. Alemany, X. Zhan, G. Gao, S.A. Vithayathil, B.A. Kaipparettu, A.A. Marti, T. Hayashi, J. Zhu, P.M. Ajayan, Nano Lett. 12, 844 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    F. Chen, W. Gao, X. Qiu, H. Zhang, L. Liu, P. Liao, W. Fu, Y. Luo, Front. Lab. Med. 1, 192 (2017)CrossRefGoogle Scholar
  15. 15.
    Q. Liu, B. Guo, Z. Rao, B. Zhang, J.R. Gong, Nano Lett. 13, 2436 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Z. Wang, H.D. Zeng, L.Y. Sun, J. Mater. Chem. C 3, 1157 (2015)CrossRefGoogle Scholar
  17. 17.
    W. Chen, G. Lv, W. Hu, D. Li, S. Chen, Z. Dai, Nanotechnol. Rev. 7, 157 (2018)CrossRefGoogle Scholar
  18. 18.
    N. Gobi, D. Vijayakumar, O. Keles, F. Erogbogbo, ACS Omega 2, 4356 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    A. Kausar, J. Macromol. Sci. A 56, 341 (2019)CrossRefGoogle Scholar
  20. 20.
    M.J. Deka, A. Dutta, D. Chowdhury, New J. Chem. 42, 355 (2018)CrossRefGoogle Scholar
  21. 21.
    A. Wolk, M. Rosenthal, S. Neuhaus, K. Huber, K. Brassat, J.K.N. Linder, R. Grothe, G. Graundmeier, W. Bremser, R. Wilhelm, Sci. Rep. 8, 5843 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    M. Zhao, Appl. Sci. 8, 1303 (2018)CrossRefGoogle Scholar
  23. 23.
    A. Shomali, H. Valizadeh, A. Banan, R. Mohammad-Rezaei, RSC Adv. 5, 88202 (2015)CrossRefGoogle Scholar
  24. 24.
    D. Mondal, M. Griffith, S.S. Venkatraman, Int. J. Polym. Mater. Polym. Biomater. 65, 255 (2016)CrossRefGoogle Scholar
  25. 25.
    M. Jahangiri, A.E. Kalajahi, M. Rezaei, M. Bagheri, J. Polym. Res. 26, 136 (2019)CrossRefGoogle Scholar
  26. 26.
    J. Song, H. Gao, G. Zhu, X. Cao, X. Shi, Y. Wang, Carbon 95, 1039 (2015)CrossRefGoogle Scholar
  27. 27.
    Kenry, C.T. Lim, Prog. Polym. Sci. 70, 1 (2017)CrossRefGoogle Scholar
  28. 28.
    K.E. Swindle-Reilly, C.S. Paranjape, C.A. Miller, Prog. Biomater. 3, 20 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Y. Qian, Z. Zhang, L. Zheng, R. Song, Y. Zhao, J. Nanomater. 2014, 7 (2014)Google Scholar
  30. 30.
    D. Wu, A. Samanta, R.K. Srivastava, M. Hakkarainen, Materials 11, 566 (2018)PubMedCentralCrossRefGoogle Scholar
  31. 31.
    H.J. Yoo, S.S. Mahapatra, J.W. Cho, J. Phys. Chem. C 118, 10408 (2014)CrossRefGoogle Scholar
  32. 32.
    C. Liu, H.M. Wong, K.W.K. Yeung, S.C. Tjong, Polymers 8, 287 (2016)PubMedCentralCrossRefGoogle Scholar
  33. 33.
    A. Kausar, J. Polym. Plast. Technol. Mater. 58, 597 (2019)Google Scholar
  34. 34.
    C. Pang, S. Han, Y. Li, J. Zhang, J. Chin. Chem. Soc. 65, 1504 (2018)CrossRefGoogle Scholar
  35. 35.
    K. Kondoh, K. Kawabata, T. Serikawa, H. Kimura, Adv. Mater. Sci. Eng. 2008, 4 (2008)CrossRefGoogle Scholar
  36. 36.
    I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Nat. Commun. 1, 73 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K.S. Teng, C.M. Luk, S. Zeng, J. Hao, S.P. Lau, ACS Nano 6, 5102 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    M. Jahangiri, M. Bagheri, F. Farshi, J. Polym. Res. 22, 196 (2015)CrossRefGoogle Scholar
  39. 39.
    M. Bagheri, S. Shateri, J. Polym. Res. 19, 9842 (2012)CrossRefGoogle Scholar
  40. 40.
    R. Wang, X. Wang, S. Chen, G. Jiang, Des. Monomers Polym. 15, 303 (2012)CrossRefGoogle Scholar
  41. 41.
    O.J. Yoon, C.Y. Jung, I.Y. Sohn, H.J. Kim, B. Hong, M.S. Jhon, N.-E. Lee, Compos. Part A 42, 1978 (2011)CrossRefGoogle Scholar
  42. 42.
    H. Xu, K.H. Adolfsson, L. Xie, S. Hassanzadeh, T. Pettersson, M. Hakkarainen, ACS Sustain. Chem. Eng. 4, 5618 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceAzarbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations