Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Synthesis, Molecular Structure and Theoretical Investigation of Optical and Electronic Properties of New Crystalline Polymer: [(C6H5NH3)2Cd(SCN)2Cl2]n

  • 138 Accesses


A new crystalline polymer compound {(C6H5NH3)2Cd(SCN)2Cl2}n was synthesized and analyzed using single crystal XRD,UV–Vis spectroscopy. The crystal structure refinement shows that this ionic material crystallizes at 298 K in the monoclinic system (C2/c space group). The cohesion and the stability of the polymeric structure is assured by (i) the establishment of N–H···Cl and N–H···N (NCS) hydrogen bonding contacts between the (C6H5NH3)+ cations and the [Cd(SCN)2Cl2]n2n− chains, (ii) the π–π interactions between the centroids of the phenyl rings of (C6H5NH3)+ cations and (iii) the C(6)–H(6)···π (phenyl) interactions. The indirect optical band gap energy deduced from the UV–Vis spectroscopy is Eg = 3.91 eV. Electronic structure, and optical properties were determined using density functional theory (DFT) calculations. The atomic coordinates and the lattice parameters were optimized while the space group symmetry was kept fixed during the refinements. The estimated band gap between HOMO and LUMO calculation is 3.67 eV. Moreover in order to understand the optical properties of {(C6H5NH3)2Cd(SCN)2Cl2}n, the dielectric function, optical reflectivity, refractive index, optical conductivity and electron energy loss are calculated and discussed for radiation up to 38 eV.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    S.H. Mir, L.A. Nagahara, T. Thundat, P. Mokarian-Tabari, H. Furukawa, A. Khosla, Organic-inorganic hybrid functional materials: an integrated platform for applied technologies. J. Electrochem. Soc. 165(8), B3137–B3156 (2018). https://doi.org/10.1149/2.0191808jes

  2. 2.

    Y. Cui, B. Li, H. He, W. Zhou, B. Chen, G. Qian, Metal–organic frameworks as platforms for functional materials. Acc. Chem. Res. 49(3), 483–493 (2016). https://doi.org/10.1021/acs.accounts.5b00530

  3. 3.

    V. Stavila, A.A. Talin, M.D. Allendorf, MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 43(16), 5994–6010 (2014). https://doi.org/10.1039/C4CS00096J

  4. 4.

    L.J. Ji, S.J. Sun, Y. Qin, K. Li, W. Li, Mechanical properties of hybrid organic-inorganic perovskites. Coord. Chem. Rev. 391, 15–29 (2019). https://doi.org/10.1016/j.ccr.2019.03.020

  5. 5.

    G. Tang, C. Yang, A. Stroppa, D. Fang, J. Hong, Revealing the role of thiocyanate anion in layered hybrid halide perovskite (CH3NH3)2Pb(SCN)2I2. J. Chem. Phys. 146(22), 224702 (2017). https://doi.org/10.1063/1.4984615

  6. 6.

    Y. Chen, B. Li, W. Huang, D. Gao, Z. Liang, Efficient and reproducible CH3NH3PbI3 − x (SCN) x perovskite based planar solar cells. Chem. Commun. 51(60), 11997–11999 (2015). https://doi.org/10.1039/c5cc03615a

  7. 7.

    Ç. Hopa, M. Alkan, C. Kazak, N.B. Arslan, R. Kurtaran, Chloro-bridged dimeric cadmium(II)-isothiocyanate complex with a tridentate NNN type ligand: synthesis, X-ray structure, thermal analysis. J. Chem. Crystallogr. 40(2), 160–164 (2010). https://doi.org/10.1007/s10870-009-9625-x

  8. 8.

    C.P. Li, M. Du, Recent advances in Cd(II) coordination polymers: structural aspects, adaptable assemblies, and potential applications. Inorg. Chem. Commun. 14(3), 502–513 (2011). https://doi.org/10.1016/j.inoche.2010.12.025

  9. 9.

    K. Saidi, S. Kamoun, H.F. Ayedi, Crystal structure, NMR spectroscopy, electrical properties of catena-poly[(bis-glycinium-k 2 O:O)-di-μ-thiocyanate- k 2N:S; k 2 S: N -cadmium(II)]. Ionics 20(4), 517–527 (2014). https://doi.org/10.1007/s11581-013-0993-z

  10. 10.

    H.-S. Moon, C.-H. Kim, S.-G. Lee, One-dimensional polymeric chain structure of bis(aniline)dithiocyanatocadmium(II). Acta Crystallogr. C 56(4), 425–426 (2000). https://doi.org/10.1107/S0108270100000160

  11. 11.

    K. Saidi, S. Kamoun, H.F. Ayedi, M. Gargouri, Crystal structure, NMR study, dc-conductivity and dielectric relaxation studies of a new compound [C2H10N2]Cd(SCN)2Cl2. EPJ Web Conf. (2012). https://doi.org/10.1051/epjconf/20122900031

  12. 12.

    B. Guo, X. Zhang, Y.N. Wang, J.J. Huang, J.H. Yu, J.Q. Xu, New 1-D and 3-D thiocyanatocadmates modified by various amine molecules and Cl/CH3COO ions: synthesis, structural characterization, thermal behavior and photoluminescence properties. Dalton Trans. 44(11), 5095–5105 (2015). https://doi.org/10.1039/c4dt03799e

  13. 13.

    H.L. Jia, M.J. Jia, G. Zeng, J. Jin, J.H. Yu, J.Q. Xu, Structural characterization of a series of new organically templated chained thiocyanato(halo)cadmates. CrystEngComm 14(20), 6599–6608 (2012). https://doi.org/10.1039/c2ce25616a

  14. 14.

    Y. Li, P. Yang, Synthesis, crystal structure, and DNA-binding properties of a new Cd(II) complex involving 2-(2-1H-imidazolyl)-1H-imdazolium ligand. Chin. J. Chem. 28, 759–765 (2010). https://doi.org/10.1002/cjoc.201090143

  15. 15.

    I. Altarawneh, K. Altarawneh, H. Ala’a, S. Alrawadieh, M. Altarawneh, Theoretical study of thermochemical and structural parameters of chlorinated isomers of aniline. Comput. Theor. Chem. 985, 30–35 (2012). https://doi.org/10.1016/j.comptc.2012.01.032

  16. 16.

    H. Atci, Y. Polat, M. Huseyinoglu, B. Arikan, A. Siddiki, DFT modelling of the effect of strong magnetic field on Aniline molecule. arXiv:1611.00552 (2016)

  17. 17.

    V. Deshmukh, B. Kharat, A. Chaudhari, Nonlinear optical properties and spectroscopic characterization of aniline in singlet, triplet and quintet state using quantum chemical methods. Comput. Theor. Chem. 980, 115–122 (2012)

  18. 18.

    G.M. Sheldrick, SHELXS-97, Program for the Solution of Crystal Structures (Univ. of Göttingen, Göttingen, 1997)

  19. 19.

    G.M. Sheldrick, SHELXL-97: Crystal Structure Refinement Program (University of Göttingen, Göttingen, 1997)

  20. 20.

    L.J. Farrugia, WinGX program features. J. Appl. Crystallogr. 32, 837–838 (1999)

  21. 21.

    H. Putz, K. Brandenburg, Diamond—Crystal and Molecular Structure Visualization, Crystal Impact, Bonn. http://www.crystalimpact.com/diamond

  22. 22.

    S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP. Z. Krist. 220(5–6), 567–570 (2005)

  23. 23.

    N. Hernández-Haro, J. Ortega-Castro, Y.B. Martynov, R.G. Nazmitdinov, A. Frontera, DFT prediction of band gap in organic–inorganic metal halide perovskites: an exchange–correlation functional benchmark study. Chem. Phys. 516, 225–231 (2019). https://doi.org/10.1016/j.chemphys.2018.09.023

  24. 24.

    K. Burke, J.P. Perdew, Y. Wang, Derivation of a generalized gradient approximation: the PW91 density functional, in Electronic Density Functional Theory, ed. by J.F. Dobson, G. Vignale, M.P. Das (Springer, Boston, 1998). https://doi.org/10.1007/978-1-4899-0316-7_7

  25. 25.

    A. Domenicano, P. Murray-Rust, Geometrical substituent parameters for benzene derivatives: inductive and resonance effects. Tetrahedron Lett. 20(24), 2283–2286 (1979). https://doi.org/10.1016/S0040-4039(01)93699-8

  26. 26.

    O.M. Kirkby, M. Sala, G. Balerdi, R. de Nalda, L. Banares, S. Guérin, H.H. Fielding, Comparing the electronic relaxation dynamics of aniline and d7-aniline following excitation at 272–238 nm. Phys. Chem. Chem. Phys. 17(25), 16270–16276 (2015). https://doi.org/10.1039/C5CP01883H

  27. 27.

    N. Singh, P.K. Singh, A. Shukla, S. Singh, P. Tandon, Synthesis and characterization of nanostructured magnesium oxide: insight from solid-state density functional theory calculations. J. Inorg. Organomet. Polym Mater. 26(6), 1413–1420 (2016). https://doi.org/10.1007/s10904-016-0411-x

  28. 28.

    Q.J. Liu, N.C. Zhang, F.S. Liu, Z.T. Liu, Structural, electronic, optical, elastic properties and Born effective charges of monoclinic HfO2 from first-principles calculations. Chin. Phys. B 23(4), 1–8 (2014). https://doi.org/10.1088/1674-1056/23/4/047101

  29. 29.

    S.J. Edrees, M.M. Shukur, M.M. Obeid, First-principle analysis of the structural, mechanical, optical and electronic properties of wollastonite monoclinic polymorph. Comput. Condens. Matter 14, 20–26 (2018). https://doi.org/10.1016/j.cocom.2017.12.004

  30. 30.

    M.A. Ali, N. Jahan, A.K.M.A. Islam, Sulvanite compounds Cu3TMS4 (TM = V, Nb and Ta): elastic, electronic, optical and thermal properties using first-principles method. J. Sci. Res. 6, 407–419 (2014). https://doi.org/10.3329/jsr.v6i3.19191

Download references


The authors are grateful the support of the Tunisian Ministry of Higher Education and Scientific Research for LR11ES46.

Author information

Correspondence to Slaheddine Kamoun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 352 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jabbar, R., Kamoun, S. Synthesis, Molecular Structure and Theoretical Investigation of Optical and Electronic Properties of New Crystalline Polymer: [(C6H5NH3)2Cd(SCN)2Cl2]n. J Inorg Organomet Polym 30, 649–657 (2020). https://doi.org/10.1007/s10904-019-01321-x

Download citation


  • Crystal structure
  • Density functional theory
  • Electronic structure
  • Optical properties