Synthesis and Study on Photogenerated Charge Behavior of Novel Pt/CeO2/ZnO Ternary Composites with Enhanced Photocatalytic Degradation Activity
- 19 Downloads
Abstract
A novel Pt/CeO2/ZnO ternary composite is synthesized via two simple procedures of hydrothermal and photoreduction. The crystal structure, morphology, and composition of as-prepared samples are characterized by XRD, SEM, HRTEM, XPS and UV–Vis DRS. Because both ZnO and CeO2 are good photocatalytic semiconductors, photocatalytic activities of the samples are evaluated by the degradation of phenol aqueous solution (25 mg/L). Under the strong interaction among the Pt, CeO2 and ZnO, the maximum photocatalytic activity is observed in the Pt/CeO2/ZnO ternary composites and 91% phenol can be degraded in 60 min under UV light irradiation. The probable photocatalytic mechanism is discussed by active species trapping experiments along with SPV, TPV, PL and PA measurements. The enhanced photocatalytic activity is attributed to the redox cycle of Ce4+ ↔ Ce3+, the effective interface between ZnO and CeO2 as well as the electron transfer action of Pt nanoparticles. The photocatalytic activity almost unchanged after four cycles and proves excellent reusable photocatalysts. This work shows the synergistic effect of rare earth elements and noble metals in the photocatalytic process, which facilitates their practical application in toxic pollution abatement.
Keywords
Ternary composites Rare elements Photocatalytic mechanism TPV Pollution abatementNotes
Acknowledgements
We are grateful to the National Natural Science Foundation of China (Nos. 21872063, 51572106, 21773086).
References
- 1.L. Liu, Y.H. Qi, J.R. Lu, S.L. Lin, W.J. An, Y.H. Liang, W.Q. Cui, Appl. Catal. B 183, 133 (2016)CrossRefGoogle Scholar
- 2.J.C. Sin, S.M. Lam, I. Satoshi, K.T. Lee, A.R. Mohamed, Appl. Catal. B 148, 258 (2014)CrossRefGoogle Scholar
- 3.J.J. Jiang, P. Zhao, L.Q. Shi, X.Z. Yue, Q.Q. Qiu, T.F. Xie, D.J. Wang, Y.H. Lin, Z. Mu, J. Colloid Interface Sci. 518, 102 (2018)CrossRefPubMedGoogle Scholar
- 4.V. Etacheri, R. Roshan, V. Kumar, ACS Appl. Mater. Interfaces 4, 2717 (2012)CrossRefPubMedGoogle Scholar
- 5.D.M. Chen, Z.H. Wang, T.Z. Ren, H. Ding, W.Q. Yao, R.L. Zong, Y.F. Zhu, J. Phys. Chem. C 118, 15300 (2014)CrossRefGoogle Scholar
- 6.H.B. Lu, S.M. Wang, L. Zhao, J.C. Li, B.H. Dong, Z.X. Xu, J. Mater. Chem. 21, 4228 (2011)CrossRefGoogle Scholar
- 7.Z.Z. Han, L. Liao, Y.T. Wu, H.B. Pan, S.F. Shen, J.Z. Chen, J. Hazard. Mater. 217, 100 (2012)CrossRefPubMedGoogle Scholar
- 8.C. Tang, L.F. Liu, Y.L. Li, Z.F. Bian, Appl. Catal. B 201, 41 (2017)CrossRefGoogle Scholar
- 9.M.X. Sun, Y.Y. Kong, Y.L. Fang, S. Sood, Y. Yao, J.F. Shi, A. Umar, Dalton Trans. 46, 15727 (2017)CrossRefPubMedGoogle Scholar
- 10.X.J. Lin, M.X. Sun, Y. Yao, X.J. Yuan, Electrochim. Acta 291, 319 (2018)CrossRefGoogle Scholar
- 11.Y. Peng, M. Yan, Q.G. Chen, C.M. Fan, H.Y. Zhou, A.W. Xu, J. Mater. Chem. A 2, 8517 (2014)CrossRefGoogle Scholar
- 12.Y.J. Wang, R. Shi, J. Lin, Y.F. Zhu, Energy Environ. Sci. 4, 2922 (2011)CrossRefGoogle Scholar
- 13.D.G. Wang, P.F. Tan, H. Wang, M. Song, J. Pan, G.C. Kuang, J. Solid State Chem. 267, 22 (2018)CrossRefGoogle Scholar
- 14.M.X. Sun, Y.L. Fang, Y.Y. Kong, S.F. Sun, Z.S. Yu, A. Umar, Dalton Trans. 45, 12702 (2016)CrossRefPubMedGoogle Scholar
- 15.U. Sulaeman, S. Suhendar, H. Diastuti, A. Riapanitra, S. Yin, Solid State Sci. 86, 1 (2018)CrossRefGoogle Scholar
- 16.G. Yang, W. Yan, Q. Zhang, S. Shen, S. Ding, Nanoscale 5, 12432 (2013)CrossRefPubMedGoogle Scholar
- 17.H. Gu, Y. Yang, J.X. Tian, G.Y. Shi, ACS Appl. Mater. Interfaces 5, 6762 (2013)CrossRefPubMedGoogle Scholar
- 18.J.P. Wang, Z.Y. Wang, B.B. Huang, Y.D. Ma, Y.Y. Liu, X.Y. Qin, X.Y. Zhang, Y. Dai, ACS Appl. Mater. Interfaces 4, 4024 (2012)CrossRefPubMedGoogle Scholar
- 19.Z.B. Yu, Y.P. Xie, G. Liu, G.Q. Lu, X.L. Ma, H.M. Cheng, J. Mater. Chem. A 1, 2773 (2013)CrossRefGoogle Scholar
- 20.M. Nasir, S. Bagwasi, Y.C. Jiao, F. Chen, B.Z. Tian, J.L. Zhang, Chem. Eng. J. 236, 388 (2014)CrossRefGoogle Scholar
- 21.C. Wang, H.Q. Fan, X.H. Ren, J.W. Fang, Appl. Phys. A 124, 99 (2018)CrossRefGoogle Scholar
- 22.R. Lamba, A. Umar, S.K. Mehta, S.K. Kansal, J. Alloys Compd. 620, 67 (2015)CrossRefGoogle Scholar
- 23.Z.L. Yang, J. Lu, W.C. Ye, C.S. Yu, Y.L. Chang, Appl. Surf. Sci. 392, 472 (2017)CrossRefGoogle Scholar
- 24.Y.X. Zhu, Z. Chen, T. Gao, Q.L. Huang, F. Niu, L.S. Qin, P. Tang, Y.X. Huang, Z.L. Sha, Y.F. Wang, Appl. Catal. B 163, 16 (2015)CrossRefGoogle Scholar
- 25.C.L. Yu, Y. Bai, J.C. Chen, W.Q. Zhou, H.B. He, J.C. Yu, L.H. Zhu, S.S. Xue, Sep. Purif. Technol. 154, 115 (2015)CrossRefGoogle Scholar
- 26.H.F. Liang, X.D. Jiang, W. Chen, S.Q. Wang, B.B. Xu, Z.C. Wang, Ceram. Int. 40, 5653 (2014)CrossRefGoogle Scholar
- 27.C. Harris, P.V. Kamat, ACS Nano 4, 7321 (2010)CrossRefPubMedGoogle Scholar
- 28.L.N. Han, D.J. Wang, J.B. Cui, L.P. Chen, T.F. Jiang, Y.H. Lin, J. Mater. Chem. 22, 12915 (2012)CrossRefGoogle Scholar
- 29.K.M. Lin, Y.Y. Chen, C.Y. Chiu, J. Sol–Gel Sci. Technol. 55, 299 (2010)CrossRefGoogle Scholar
- 30.N. Tian, H.W. Huang, C.Y. Liu, F. Dong, T.R. Zhang, X. Du, S.X. Yu, Y.H. Zhang, J. Mater. Chem. A 3, 17120 (2015)CrossRefGoogle Scholar
- 31.T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Chem. Rev. 116, 5987 (2016)CrossRefGoogle Scholar
- 32.J.F. Gong, F.M. Meng, X. Yang, Z.H. Fan, H.J. Li, J. Alloys Compd. 689, 606 (2016)CrossRefGoogle Scholar
- 33.K. Buvaneswari, R. Karthiga, B. Kavitha, M. Rajarajan, A. Suganthi, Appl. Surf. Sci. 356, 333 (2015)CrossRefGoogle Scholar
- 34.L.L. Bi, X.P. Gao, L.J. Zhang, D.J. Wang, X.X. Zou, T.F. Xie, ChemSusChem 11, 276 (2018)CrossRefPubMedGoogle Scholar
- 35.D. Anbuselvan, S. Muthukumaran, Opt. Mater. 42, 124 (2015)CrossRefGoogle Scholar
- 36.J.J. Jiang, Z. Mu, H.M. Xing, Q.N. Wu, X.Z. Yue, Y.H. Lin, Appl. Surf. Sci. 478, 1037 (2019)CrossRefGoogle Scholar
- 37.Y.Y. Lin, K.Y. Li, Q.S. Shan, H. Yin, R.P. Zhu, Acta Physica Sinica 65, 038101 (2016)Google Scholar
- 38.J.C. Sin, S.M. Lam, K.T. Lee, A.R. Mohamed, Res. Chem. Intermed. 41, 2489 (2015)CrossRefGoogle Scholar
- 39.N.A. Suhaimi, J.C. Sin, S.M. Lam, A.R. Mohamed, Mater. Lett. 154, 5 (2015)CrossRefGoogle Scholar
- 40.C.J. Hao, J. Li, Z.L. Zhang, Y.J. Ji, H.H. Zhan, F.X. Xiao, D. Wang, B. Liu, F.B. Su, Appl. Surf. Sci. 331, 17 (2015)CrossRefGoogle Scholar
- 41.F.F. Duo, Y.W. Wang, X.M. Mao, C.M. Fan, H. Zhang, Cryst. Res. Technol. 49, 721 (2014)CrossRefGoogle Scholar
- 42.N. Morales-Flores, U. Pal, E.S. Mora, Appl. Catal. A 394, 269 (2011)CrossRefGoogle Scholar
- 43.Y. Lara-López, G. García-Rosales, J. Jiménez-Becerril, J. Rare Earth 35, 551 (2017)CrossRefGoogle Scholar
- 44.N. Huang, J.X. Shu, Z.H. Wang, M. Chen, C.G. Ren, W. Zhang, J. Alloys Compd. 648, 919 (2015)CrossRefGoogle Scholar
- 45.T.Z. Tong, J.L. Zhang, B.Z. Tian, F. Chen, D.N. He, M. Anpo, J. Colloid Interface Sci. 315, 382 (2007)CrossRefPubMedGoogle Scholar
- 46.S.F. Yang, C.G. Niu, D.W. Huang, H. Zhang, C. Liang, G.M. Zeng, Environ. Sci. 4, 585 (2017)Google Scholar
- 47.X.J. Wang, X.L. Wan, X.N. Xu, X.N. Chen, Appl. Surf. Sci. 321, 10 (2014)CrossRefGoogle Scholar