Synthesis and Study on Photogenerated Charge Behavior of Novel Pt/CeO2/ZnO Ternary Composites with Enhanced Photocatalytic Degradation Activity

  • Peng Zhao
  • Jinteng Zhang
  • Jingjing Jiang
  • Hongtao Wang
  • Tengfeng Xie
  • Yanhong LinEmail author


A novel Pt/CeO2/ZnO ternary composite is synthesized via two simple procedures of hydrothermal and photoreduction. The crystal structure, morphology, and composition of as-prepared samples are characterized by XRD, SEM, HRTEM, XPS and UV–Vis DRS. Because both ZnO and CeO2 are good photocatalytic semiconductors, photocatalytic activities of the samples are evaluated by the degradation of phenol aqueous solution (25 mg/L). Under the strong interaction among the Pt, CeO2 and ZnO, the maximum photocatalytic activity is observed in the Pt/CeO2/ZnO ternary composites and 91% phenol can be degraded in 60 min under UV light irradiation. The probable photocatalytic mechanism is discussed by active species trapping experiments along with SPV, TPV, PL and PA measurements. The enhanced photocatalytic activity is attributed to the redox cycle of Ce4+ ↔ Ce3+, the effective interface between ZnO and CeO2 as well as the electron transfer action of Pt nanoparticles. The photocatalytic activity almost unchanged after four cycles and proves excellent reusable photocatalysts. This work shows the synergistic effect of rare earth elements and noble metals in the photocatalytic process, which facilitates their practical application in toxic pollution abatement.


Ternary composites Rare elements Photocatalytic mechanism TPV Pollution abatement 



We are grateful to the National Natural Science Foundation of China (Nos. 21872063, 51572106, 21773086).


  1. 1.
    L. Liu, Y.H. Qi, J.R. Lu, S.L. Lin, W.J. An, Y.H. Liang, W.Q. Cui, Appl. Catal. B 183, 133 (2016)CrossRefGoogle Scholar
  2. 2.
    J.C. Sin, S.M. Lam, I. Satoshi, K.T. Lee, A.R. Mohamed, Appl. Catal. B 148, 258 (2014)CrossRefGoogle Scholar
  3. 3.
    J.J. Jiang, P. Zhao, L.Q. Shi, X.Z. Yue, Q.Q. Qiu, T.F. Xie, D.J. Wang, Y.H. Lin, Z. Mu, J. Colloid Interface Sci. 518, 102 (2018)CrossRefPubMedGoogle Scholar
  4. 4.
    V. Etacheri, R. Roshan, V. Kumar, ACS Appl. Mater. Interfaces 4, 2717 (2012)CrossRefPubMedGoogle Scholar
  5. 5.
    D.M. Chen, Z.H. Wang, T.Z. Ren, H. Ding, W.Q. Yao, R.L. Zong, Y.F. Zhu, J. Phys. Chem. C 118, 15300 (2014)CrossRefGoogle Scholar
  6. 6.
    H.B. Lu, S.M. Wang, L. Zhao, J.C. Li, B.H. Dong, Z.X. Xu, J. Mater. Chem. 21, 4228 (2011)CrossRefGoogle Scholar
  7. 7.
    Z.Z. Han, L. Liao, Y.T. Wu, H.B. Pan, S.F. Shen, J.Z. Chen, J. Hazard. Mater. 217, 100 (2012)CrossRefPubMedGoogle Scholar
  8. 8.
    C. Tang, L.F. Liu, Y.L. Li, Z.F. Bian, Appl. Catal. B 201, 41 (2017)CrossRefGoogle Scholar
  9. 9.
    M.X. Sun, Y.Y. Kong, Y.L. Fang, S. Sood, Y. Yao, J.F. Shi, A. Umar, Dalton Trans. 46, 15727 (2017)CrossRefPubMedGoogle Scholar
  10. 10.
    X.J. Lin, M.X. Sun, Y. Yao, X.J. Yuan, Electrochim. Acta 291, 319 (2018)CrossRefGoogle Scholar
  11. 11.
    Y. Peng, M. Yan, Q.G. Chen, C.M. Fan, H.Y. Zhou, A.W. Xu, J. Mater. Chem. A 2, 8517 (2014)CrossRefGoogle Scholar
  12. 12.
    Y.J. Wang, R. Shi, J. Lin, Y.F. Zhu, Energy Environ. Sci. 4, 2922 (2011)CrossRefGoogle Scholar
  13. 13.
    D.G. Wang, P.F. Tan, H. Wang, M. Song, J. Pan, G.C. Kuang, J. Solid State Chem. 267, 22 (2018)CrossRefGoogle Scholar
  14. 14.
    M.X. Sun, Y.L. Fang, Y.Y. Kong, S.F. Sun, Z.S. Yu, A. Umar, Dalton Trans. 45, 12702 (2016)CrossRefPubMedGoogle Scholar
  15. 15.
    U. Sulaeman, S. Suhendar, H. Diastuti, A. Riapanitra, S. Yin, Solid State Sci. 86, 1 (2018)CrossRefGoogle Scholar
  16. 16.
    G. Yang, W. Yan, Q. Zhang, S. Shen, S. Ding, Nanoscale 5, 12432 (2013)CrossRefPubMedGoogle Scholar
  17. 17.
    H. Gu, Y. Yang, J.X. Tian, G.Y. Shi, ACS Appl. Mater. Interfaces 5, 6762 (2013)CrossRefPubMedGoogle Scholar
  18. 18.
    J.P. Wang, Z.Y. Wang, B.B. Huang, Y.D. Ma, Y.Y. Liu, X.Y. Qin, X.Y. Zhang, Y. Dai, ACS Appl. Mater. Interfaces 4, 4024 (2012)CrossRefPubMedGoogle Scholar
  19. 19.
    Z.B. Yu, Y.P. Xie, G. Liu, G.Q. Lu, X.L. Ma, H.M. Cheng, J. Mater. Chem. A 1, 2773 (2013)CrossRefGoogle Scholar
  20. 20.
    M. Nasir, S. Bagwasi, Y.C. Jiao, F. Chen, B.Z. Tian, J.L. Zhang, Chem. Eng. J. 236, 388 (2014)CrossRefGoogle Scholar
  21. 21.
    C. Wang, H.Q. Fan, X.H. Ren, J.W. Fang, Appl. Phys. A 124, 99 (2018)CrossRefGoogle Scholar
  22. 22.
    R. Lamba, A. Umar, S.K. Mehta, S.K. Kansal, J. Alloys Compd. 620, 67 (2015)CrossRefGoogle Scholar
  23. 23.
    Z.L. Yang, J. Lu, W.C. Ye, C.S. Yu, Y.L. Chang, Appl. Surf. Sci. 392, 472 (2017)CrossRefGoogle Scholar
  24. 24.
    Y.X. Zhu, Z. Chen, T. Gao, Q.L. Huang, F. Niu, L.S. Qin, P. Tang, Y.X. Huang, Z.L. Sha, Y.F. Wang, Appl. Catal. B 163, 16 (2015)CrossRefGoogle Scholar
  25. 25.
    C.L. Yu, Y. Bai, J.C. Chen, W.Q. Zhou, H.B. He, J.C. Yu, L.H. Zhu, S.S. Xue, Sep. Purif. Technol. 154, 115 (2015)CrossRefGoogle Scholar
  26. 26.
    H.F. Liang, X.D. Jiang, W. Chen, S.Q. Wang, B.B. Xu, Z.C. Wang, Ceram. Int. 40, 5653 (2014)CrossRefGoogle Scholar
  27. 27.
    C. Harris, P.V. Kamat, ACS Nano 4, 7321 (2010)CrossRefPubMedGoogle Scholar
  28. 28.
    L.N. Han, D.J. Wang, J.B. Cui, L.P. Chen, T.F. Jiang, Y.H. Lin, J. Mater. Chem. 22, 12915 (2012)CrossRefGoogle Scholar
  29. 29.
    K.M. Lin, Y.Y. Chen, C.Y. Chiu, J. Sol–Gel Sci. Technol. 55, 299 (2010)CrossRefGoogle Scholar
  30. 30.
    N. Tian, H.W. Huang, C.Y. Liu, F. Dong, T.R. Zhang, X. Du, S.X. Yu, Y.H. Zhang, J. Mater. Chem. A 3, 17120 (2015)CrossRefGoogle Scholar
  31. 31.
    T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Chem. Rev. 116, 5987 (2016)CrossRefGoogle Scholar
  32. 32.
    J.F. Gong, F.M. Meng, X. Yang, Z.H. Fan, H.J. Li, J. Alloys Compd. 689, 606 (2016)CrossRefGoogle Scholar
  33. 33.
    K. Buvaneswari, R. Karthiga, B. Kavitha, M. Rajarajan, A. Suganthi, Appl. Surf. Sci. 356, 333 (2015)CrossRefGoogle Scholar
  34. 34.
    L.L. Bi, X.P. Gao, L.J. Zhang, D.J. Wang, X.X. Zou, T.F. Xie, ChemSusChem 11, 276 (2018)CrossRefPubMedGoogle Scholar
  35. 35.
    D. Anbuselvan, S. Muthukumaran, Opt. Mater. 42, 124 (2015)CrossRefGoogle Scholar
  36. 36.
    J.J. Jiang, Z. Mu, H.M. Xing, Q.N. Wu, X.Z. Yue, Y.H. Lin, Appl. Surf. Sci. 478, 1037 (2019)CrossRefGoogle Scholar
  37. 37.
    Y.Y. Lin, K.Y. Li, Q.S. Shan, H. Yin, R.P. Zhu, Acta Physica Sinica 65, 038101 (2016)Google Scholar
  38. 38.
    J.C. Sin, S.M. Lam, K.T. Lee, A.R. Mohamed, Res. Chem. Intermed. 41, 2489 (2015)CrossRefGoogle Scholar
  39. 39.
    N.A. Suhaimi, J.C. Sin, S.M. Lam, A.R. Mohamed, Mater. Lett. 154, 5 (2015)CrossRefGoogle Scholar
  40. 40.
    C.J. Hao, J. Li, Z.L. Zhang, Y.J. Ji, H.H. Zhan, F.X. Xiao, D. Wang, B. Liu, F.B. Su, Appl. Surf. Sci. 331, 17 (2015)CrossRefGoogle Scholar
  41. 41.
    F.F. Duo, Y.W. Wang, X.M. Mao, C.M. Fan, H. Zhang, Cryst. Res. Technol. 49, 721 (2014)CrossRefGoogle Scholar
  42. 42.
    N. Morales-Flores, U. Pal, E.S. Mora, Appl. Catal. A 394, 269 (2011)CrossRefGoogle Scholar
  43. 43.
    Y. Lara-López, G. García-Rosales, J. Jiménez-Becerril, J. Rare Earth 35, 551 (2017)CrossRefGoogle Scholar
  44. 44.
    N. Huang, J.X. Shu, Z.H. Wang, M. Chen, C.G. Ren, W. Zhang, J. Alloys Compd. 648, 919 (2015)CrossRefGoogle Scholar
  45. 45.
    T.Z. Tong, J.L. Zhang, B.Z. Tian, F. Chen, D.N. He, M. Anpo, J. Colloid Interface Sci. 315, 382 (2007)CrossRefPubMedGoogle Scholar
  46. 46.
    S.F. Yang, C.G. Niu, D.W. Huang, H. Zhang, C. Liang, G.M. Zeng, Environ. Sci. 4, 585 (2017)Google Scholar
  47. 47.
    X.J. Wang, X.L. Wan, X.N. Xu, X.N. Chen, Appl. Surf. Sci. 321, 10 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of ChemistryJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations