Advertisement

Fluorescence Detection of Metals and Nitro Aromatic Compounds Based on Tetrastyrene Derivatives

  • Chun Yu Hou
  • Chen Wang
  • Yong Heng XingEmail author
  • Feng Ying BaiEmail author
Article

Abstract

Three luminescent derivatives were synthesized based on improving the synthetic method, including 1,1,2,2-tetrakis(4-bromophenyl)ethylene (1), 4,4′,4″,4′′′-(ethylene-1,1,2,2-tetrayl)tetrabenzoic acid (2), and 4′,4′′′,4′′′′′,4′′′′′′′-(ethylene-1,1,2,2-tetrayl)tetrakis([1,1′-biphenyl]-4-carboxylic acid) (3). They were characterized by elemental analysis, IR spectra, and 1H NMR. Moreover, the specific structure of the compound 1 is determined by single crystal diffraction. We detected the fluorescence responses of the compounds 2 and 3 in different metal ion and nitro compound solutions. It was found that the fluorescence effects of the compounds 2 and 3 for Fe3+ and trinitro phenol (TNP) were so strongest that the fluorescence intensity of the compounds being completely annihilated. In addition, we also studied the fluorescence lifetime and the quantum yield of the compounds 2 and 3, and explained the fluorescence quenching mechanism.

Keywords

Tetraphenylethylene Aggregation-induced luminescence Fluorescent probe Nitro compounds Metal ions 

Notes

Acknowledgements

This work was supported by the grants of the National Natural Science Foundation of China (Nos. 21571091, 21371086) for financial assistance.

Supplementary material

10904_2019_1283_MOESM1_ESM.docx (1.8 mb)
Supplementary material 1 (DOCX 1841 kb) The IR characteristic peaks of compounds 13 are listed in Table S1. The structural unit diagram of compound 1 is shown in Fig. S1. The IR spectra, 1H NMR, Thermal analysis of compounds 13 are shown in Figs. S2–S6. A line graph of the fluorescence response of different nitro compounds to compounds 2 and 3 are shown in Figure S9-S10. CCDC 1856319 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk

References

  1. 1.
    N. Lubick, D. Malakoff, Science 341, 1443–1445 (2013)CrossRefGoogle Scholar
  2. 2.
    T. Becquer, C. Quantin, M. Sicot, J.P. Boudot, Sci. Total Environ. 301, 251–261 (2003)CrossRefGoogle Scholar
  3. 3.
    P. Babula, V. Adam, R. Opatrilova, J. Zehnalek, L. Havel, R. Kizek, Environ. Chem. Lett. 6, 189–213 (2008)CrossRefGoogle Scholar
  4. 4.
    G. Hilson, Sci. Total Environ. 362, 1–14 (2006)CrossRefGoogle Scholar
  5. 5.
    C. Ozdemir, M. Karatas, S. Dursun, M.E. Argun, S. Dogan, Environ. Technol. 26, 397–400 (2005)CrossRefGoogle Scholar
  6. 6.
    V.K. Gupta, M. Gupta, S. Sharma, Water Res. 35, 1125–1134 (2001)CrossRefGoogle Scholar
  7. 7.
    M. Bansal, D. Singh, V.K. Garg, J. Hazard. Mater. 171, 83–92 (2009)CrossRefGoogle Scholar
  8. 8.
    K.-S. Ju, R.E. Parales, Microbiol. Mol. Biol. Rev. 74(2), 250–272 (2010)CrossRefGoogle Scholar
  9. 9.
    D. Ma, B. Li, X. Zhou, Q. Zhou, K. Liu, G. Zeng, G. Li, Z. Shi, S. Feng, Chem. Commun. 49, 8964–8966 (2013)CrossRefGoogle Scholar
  10. 10.
    L. Zhao, J. Ye, W. Li, R.F. Bogale, B. Wang, W. Gong, G. Ning, Inorg. Chem. Commun. 46, 212–215 (2014)CrossRefGoogle Scholar
  11. 11.
    M.E. Germain, M.J. Knapp, J. Am. Chem. Soc. 130(16), 5422–5423 (2008)CrossRefGoogle Scholar
  12. 12.
    G. He, H. Peng, T. Liu, M. Yang, Y. Zhang, Y. Fang, J. Mater. Chem. 19(39), 7347–7353 (2009)CrossRefGoogle Scholar
  13. 13.
    K.M. Wollin, H.H. Dieter, Arch. Environ. Contam. Toxicol. 49(1), 18–26 (2005)CrossRefGoogle Scholar
  14. 14.
    M.E. Germain, M.J. Knapp, Chem. Soc. Rev. 38(9), 2543–2555 (2009)CrossRefGoogle Scholar
  15. 15.
    S. Mukherjee, A.V. Desai, B. Manna, A.I. Inamdar, S.K. Ghosh, Cryst. Growth Des. 15, 4627–4634 (2015)CrossRefGoogle Scholar
  16. 16.
    H. Ma, C. He, X. Li, O. Ablikim, S. Zhang, M. Zhang, Sens. Actuators B 230, 746–752 (2016)CrossRefGoogle Scholar
  17. 17.
    H.H. Harris, Science 301, 1203 (2003)CrossRefGoogle Scholar
  18. 18.
    M.F. Wolfe, S. Schwarzbach, R.A. Sulaiman, Environ. Toxicol. Chem. 17, 146–160 (1998)CrossRefGoogle Scholar
  19. 19.
    F.M.M. Morel, A.M.L. Kraepiel, M. Amyot, Annu. Rev. Ecol. Syst. 29, 543–566 (1998)CrossRefGoogle Scholar
  20. 20.
    A. Renzoni, F. Zino, E. Franchi, Environ. Res. 77, 68–72 (1998)CrossRefGoogle Scholar
  21. 21.
    S. Parvesh, B. Scott, W. Glenn, S.T. Swadeshmukul, M.G. Brij, Adv. Colloid Interface Sci. 123, 471–485 (2006)Google Scholar
  22. 22.
    M. Bader, T. Göen, J. Müller, J. Angerer, J. Chromatogr. B 710, 91–99 (1998)CrossRefGoogle Scholar
  23. 23.
    T. Khayamian, M. Tabrizchi, M.T. Jafari, Talanta 59, 327–333 (2003)CrossRefGoogle Scholar
  24. 24.
    Z. Naal, J.H. Park, S. Bernhard, J.P. Shapleigh, C.A. Batt, H.D. Abruna, Anal. Chem. 74, 140–148 (2002)CrossRefGoogle Scholar
  25. 25.
    A. Hilmi, J.H. Luong, Anal. Chem. 72, 4677–4682 (2000)CrossRefGoogle Scholar
  26. 26.
    Y. Peng, A.J. Zhang, M. Dong, Y.W. Wang, Chem. Commun. 47, 4505–4507 (2011)CrossRefGoogle Scholar
  27. 27.
    T. Liu, L. Ding, K. Zhao, W. Wang, Y. Fang, J. Mater. Chem. 22, 1069–1077 (2012)CrossRefGoogle Scholar
  28. 28.
    B. Roy, A.K. Bar, B. Gole, P.S.J. Mukherjee, Org. Chem. 78, 1306–1310 (2013)CrossRefGoogle Scholar
  29. 29.
    T. Liu, K. Zhao, K. Liu, L. Ding, S. Yin, Y. Fang, J. Hazard. Mater. 246, 52–60 (2013)CrossRefGoogle Scholar
  30. 30.
    K. Liu, T. Liu, X. Chen, X. Sun, Y. Fang, ACS Appl. Mater. Interfaces 5, 9830–9836 (2013)CrossRefGoogle Scholar
  31. 31.
    S.Y. Moon, N.J. Youn, S.M. Park, S.K. Chang, J. Org. Chem. 70, 2394–2397 (2005)CrossRefGoogle Scholar
  32. 32.
    Y.K. Yang, K.J. Yook, J. Tae, J. Am. Chem. Soc. 127, 16760–16761 (2005)CrossRefGoogle Scholar
  33. 33.
    J.S. Wu, I.C.H. Wang, K.S. Kim, J.S. Kim, Org. Lett. 9, 907–910 (2007)CrossRefGoogle Scholar
  34. 34.
    T.P. Huynh, A. Wojnarowicz, A. Kelm, P. Woznicki, P. Borowicz, A. Majka, F. D’Souza, W. Kutner, ACS Sens. 1, 636–639 (2016)CrossRefGoogle Scholar
  35. 35.
    J.C. Ni, J. Yan, L.J. Zhang, D. Shang, N. Du, S. Li, J.X. Zhao, Y. Wang, Y.H. Xing, Tetrahedron Lett. 57, 4978–4982 (2016)CrossRefGoogle Scholar
  36. 36.
    B. Yadagiri, S. Gurrala, R. Bantu, L. Nagarapu, S. Polepalli, G. Srujana, N. Jain, Bioorg. Med. Chem. Lett. 25, 2220–2224 (2015)CrossRefGoogle Scholar
  37. 37.
    J.D. Lou, Z.L. Xie, J.W.Y. Lam, L. Cheng, H.Y. Chen, C.F. Qiu, B.Z. Tang, Chem. Commun. (2001).  https://doi.org/10.1039/B105159H Google Scholar
  38. 38.
    Y.N. Hong, J.W.Y. Lam, B.Z. Tang, Chem. Commun. 29, 4332–4353 (2009)CrossRefGoogle Scholar
  39. 39.
    J.Z. Liu, J.W.Y. Lam, B.Z. Tang, J. Inorg. Organomet. Polym. Mater. 19, 249–285 (2009)CrossRefGoogle Scholar
  40. 40.
    J.W. Chen, C.C.W. Law, J.W.Y. Lam, Y.P. Dong, B.Z. Tang, Chem. Mater. 15, 1535–1546 (2003)CrossRefGoogle Scholar
  41. 41.
    T.C. Bozeman, K.A. Edwards, K.M. Fecteau, M.G. Verde Jr., A. Blanchard, D.L. Woodall, N. Benfaremo, J.R. Ford, J.L. Mullin, C.K. Prudente, H.J. Tracy, J. Inorg. Organomet. Polym. Mater. 14, 316–326 (2004)Google Scholar
  42. 42.
    J.W. Chen, B. Xu, X.Y. Ouyang, B.Z. Tang, Y. Cao, J. Phys. Chem. A 108, 7522–7526 (2004)CrossRefGoogle Scholar
  43. 43.
    B.K. An, S.K. Kwon, S.D. Jung, S.Y. Park, J. Am. Chem. Soc. 124, 14410–14415 (2002)CrossRefGoogle Scholar
  44. 44.
    B. Xu, H.H. Fang, Y.J. Dong, F.P. Chen, Q.D. Chen, H.B. Sun, W.J. Tian, New J. Chem. 34, 1838–1842 (2010)CrossRefGoogle Scholar
  45. 45.
    Q. Zeng, Z. Li, Y.Q. Dong, C.A. Di, A.J. Qin, Y.N. Hong, L. Ji, Z.C. Zhu, C.K.W. Jim, G. Yu, Q.Q. Li, Z.A. Li, Y.Q. Liu, J.G. Qin, B.Z. Tang, Chem. Commun. (2007).  https://doi.org/10.1039/b613522f Google Scholar
  46. 46.
    H. Tong, Y.Q. Dong, M. Häußler, Y.N. Hong, J.W.Y. Lam, H.H.Y. Sung, I.D. Williams, H.S. Kwok, B.Z. Tang, Chem. Phys. Lett. 428, 326–330 (2006)CrossRefGoogle Scholar
  47. 47.
    R.R. Hu, E. Lager, A. Aguilar-Aguilar, J.Z. Liu, J.W.Y. Lam, H.H.Y. Sung, I.D. Williams, Y.C. Zhong, K.S. Wong, E. Peña-Cabrera, B.Z. Tang, J. Phys. Chem. C 113, 15845–15853 (2009)CrossRefGoogle Scholar
  48. 48.
    N.J. Grewal, A. Bhattachary, K. Sumit, D. Singh, K.S. Khare, J. Environ. Sci. Health B 51(12), 1–8 (2016)CrossRefGoogle Scholar
  49. 49.
    Q.L. Zhu, T.L. Sheng, R.B. Fu, S.M. Hu, C.J. Sun, X. Ma, X.T. Wu, Cryst. Eng. Comm. 13(6), 2096–2105 (2011)CrossRefGoogle Scholar
  50. 50.
    Z.W. Wei, Z.Y. Gu, R.K. Arvapally, Y.P. Chen, R.N. McDougald, J.S.F. Ivy, A.A. Yakovenko, D.W. Feng, M.A. Omary, H.C. Zhou, J. Am. Chem. Soc. 136(23), 8269–8276 (2014)CrossRefGoogle Scholar
  51. 51.
    G.M. Sheldrick, SADABS, Program for Empirical Absorption Correction for Area Detector Data (University of Gottingen, Gottingen, 1996)Google Scholar
  52. 52.
    G.M. Sheldrick, SHELXS 97, Program for Crystal Structure Refinement (University of Gottingen, Gottingen, 1997)Google Scholar
  53. 53.
    N. Du, X. Gao, J. Song, Z.N. Wang, Y.H. Xing, F.Y. Bai, Z. Shi, RSC Adv. 6(75), 71012–71024 (2016)CrossRefGoogle Scholar
  54. 54.
    J.C. Ni, J. Yan, L.J. Zhang, D. Shang, N. Du, S. Li, J.X. Zhao, Y. Wang, Y.H. Xing, Tetrahedron Lett. 57(45), 4978–4982 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringLiaoning Normal UniversityDalianPeople’s Republic of China

Personalised recommendations