Photocatalytic Degradation of 2,4-Dichlorophenoxyacetic Acid in Aqueous Solution Using Mn-doped ZnO/Graphene Nanocomposite Under LED Radiation

  • Roya Ebrahimi
  • Mahnaz Mohammadi
  • Afshin MalekiEmail author
  • Ali Jafari
  • Behzad Shahmoradi
  • Reza Rezaee
  • Mahdi Safari
  • Hiua Daraei
  • Omid Giahi
  • Kaan YetilmezsoyEmail author
  • Shivaraju Harikaranahalli Puttaiah


Chemical pesticides and herbicides are one of the most important pollutants in urban, agricultural and industrial wastewaters. Improper discharge of these compounds into water bodies’ cause harmful effects on both environment and human health. In this study, photocatalytic degradation of 2,4-Dichlorophenoxyacetic acid (usually called 2,4-D) was investigated using Mn-doped zinc oxide/graphene nanocomposite under light emitting diodes (LED) radiation. FTIR, AFM, DLS, Zeta potential, XRD, and SEM techniques were used to determine the characteristics of the nanocomposite. The effects of process-related parameters, such as the amount of nanocomposite, initial pH, 2,4-D concentrations, and contact time, on the photocatalytic degradation of the 2,4-D were studied. The results showed that the efficiency of photocatalytic degradation of 2,4-D decreased with an increase in the initial concentration of 2,4-D, while photocatalytic degradation efficiency increased by increasing the initial pH and the nano-catalyst content. The results showed that 66.2% of 2,4-D could be photocatalytically degraded using Mn-doped zinc oxide/graphene nanocomposite under LED radiation at optimal conditions (pH 5, initial Zn concentration of 10 mg L−1, nano-composite concentration of 2 g L−1, contact time of 120 min). Findings of this experimental study concluded that photocatalysis using Mn-doped zinc oxide/graphene nanocomposite under LED radiation could efficiently remove 2,4-D herbicide from aqueous media.


LED radiation ZnO Nanocomposite 2,4-Dichlorophenoxyacetic acid Graphene 



The authors offer their special thanks to the sponsors of the project.


This manuscript is extracted from the project approved by the Environmental Health Research Center and funded by the Kurdistan University of Medical Sciences (Grant No. IR.MUK.REC.1395/236).

Compliance with Ethical Standards

Conflict of interest

The authors declare that there are no conflicts of interest including any financial, personal, or other relationships with other people or organizations.

Research Involving Human and Animal Participants

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    K. Del Ãngel-Sanchez, O. Vaquez-Cuchillo, A. Aguilar-Elguezabal, A. Cruz-Lopez, A. Herrera-Gomez, Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid under visible light: effect of synthesis route. Mater. Chem. Phys. 139, 423–430 (2013)CrossRefGoogle Scholar
  2. 2.
    P. Qiu, J. Yao, H. Chen, F. Jiang, X. Xie, Enhanced visible-light photocatalytic decomposition of 2,4-dichlorophenoxyacetic acid over ZnIn2S4/g-C3N4 photocatalyst. J. Hazard. Mater. 317, 158–168 (2016)CrossRefGoogle Scholar
  3. 3.
    Y. Tang, S. Luo, Y. Teng, C. Liu, X. Xu, X. Zhang, L. Chen, Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays. J. Hazard. Mater. 241, 323–330 (2012)CrossRefGoogle Scholar
  4. 4.
    A. Nasser, U. Mingelgrin, Birnessite-induced mechanochemical degradation of 2,4-dichlorophenol. Chemosphere 107, 175–179 (2014)CrossRefGoogle Scholar
  5. 5.
    H.B. Senturk, D. Ozdes, A. Gundogdu, C. Duran, M. Soylak, Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: equilibrium, kinetic and thermodynamic study. J. Hazard. Mater. 172, 353–362 (2009)CrossRefGoogle Scholar
  6. 6.
    M. Raoov, S. Mohamad, M.R. Abas, Removal of 2,4-dichlorophenol using cyclodextrin-ionic liquid polymer as a macroporous material: characterization, adsorption isotherm, kinetic study, thermodynamics. J. Hazard. Mater. 263, 501–516 (2013)CrossRefGoogle Scholar
  7. 7.
    Y. Li, X. Li, Y. Li, J. Qi, J. Bian, Y. Yuan, Selective removal of 2,4-dichlorophenol from contaminated water using non-covalent imprinted microspheres. Environ. Pollut. 157, 1879–1885 (2009)CrossRefGoogle Scholar
  8. 8.
    R. Xu, Q. Zhou, F. Li, B. Zhang, Laccase immobilization on chitosan/poly (vinyl alcohol) composite nanofibrous membranes for 2,4-dichlorophenol removal. Chem. Eng. J. 222, 321–329 (2013)CrossRefGoogle Scholar
  9. 9.
    M. Caetano, C.S. Valderrama, A. Farran, J.L. Cortina, Phenol removal from aqueous solution by adsorption and ion exchange mechanisms onto polymeric resins. J. Colloid Interface Sci. 338, 402–409 (2009)CrossRefGoogle Scholar
  10. 10.
    M.-R. Samarghandi, J.-K. Yang, O. Giahi, M. Shirzad-Siboni, Photocatalytic reduction of hexavalent chromium with illuminated amorphous FeOOH. Environ. Technol. 36, 1132–1140 (2015)CrossRefGoogle Scholar
  11. 11.
    Z. Wang, J. Liu, Y. Dai, W. Dong, S. Zhang, J. Chen, CFD modeling of a UV-LED photocatalytic odor abatement process in a continuous reactor. J. Hazard. Mater. 215, 25–31 (2012)CrossRefGoogle Scholar
  12. 12.
    P. Xiong, J. Hu, Degradation of acetaminophen by UVA/LED/TiO2 process. Sep. Purif. Technol. 91, 89–95 (2012)CrossRefGoogle Scholar
  13. 13.
    B. Shahmoradi, A. Maleki, K. Byrappa, Removal of disperse orange 25 using in situ surface-modified iron-doped TiO2 nanoparticles. Desalin. Water Treat. 53, 3615–3622 (2015)CrossRefGoogle Scholar
  14. 14.
    B. Shahmoradi, M. Negahdary, A. Maleki, Hydrothermal synthesis of surface-modified, manganese-doped TiO2 nanoparticles for photodegradation of methylene blue. Environ. Eng. Sci. 29, 1032–1037 (2012)CrossRefGoogle Scholar
  15. 15.
    A. Maleki, M. Safari, R. Rezaee, R.D. Cheshmeh Soltani, B. Shahmoradi, Y. Zandsalimi, Photocatalytic degradation of humic substances in the presence of ZnO nanoparticles immobilized on glass plates under ultraviolet irradiation. Sep. Sci. Technol. 51, 2484–2489 (2016)CrossRefGoogle Scholar
  16. 16.
    R. DarvishiCheshmehSoltani, A. Khataee, M. Mashayekhi, M. Safari, Photocatalysis of formaldehyde in the aqueous phase over ZnO/diatomite nanocomposite. Turk. J. Chem. 40, 402–411 (2016)CrossRefGoogle Scholar
  17. 17.
    A. Maleki, M. Safari, B. Shahmoradi, Y. Zandsalimi, H. Daraei, F. Gharibi, Photocatalytic degradation of humic substances in aqueous solution using Cu-doped ZnO nanoparticles under natural sunlight irradiation. Environ. Sci. Pollut. Res. 22, 16875–16880 (2015)CrossRefGoogle Scholar
  18. 18.
    Y.H. Siddique, W. Khan, S. Khanam, S. Jyoti, F. Naz, B.R. Singh, A.H. Naqvi, Toxic potential of synthesized graphene zinc oxide nanocomposite in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg 9. Biomed. Res. Int. 2014, 1–10 (2014)Google Scholar
  19. 19.
    M. Ahmad, E. Ahmed, W. Ahmed, A. Elhissi, Z.L. Hong, N.R. Khalid, Enhancing visible light responsive photocatalytic activity by decorating Mn-doped ZnO nanoparticles on graphene. Ceram. Int. 40, 10085–10097 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Salari, F. Changani, M. DarvishMotevali, S. Akbari, Evaluation of the removal of 2ØŒ 4 dichlorophenol by chitosan from aqueous solutions. J. Environ. Health Eng. 2, 198–210 (2015)CrossRefGoogle Scholar
  21. 21.
    B.N. Dole, V.D. Mote, V.R. Huse, Y. Purushotham, M.K. Lande, K.M. Jadhav, S.S. Shah, Structural studies of Mn doped ZnO nanoparticles. Curr. Appl. Phys. 11, 762–766 (2011)CrossRefGoogle Scholar
  22. 22.
    R. Ullah, J. Dutta, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J. Hazard. Mater. 156, 194–200 (2008)CrossRefGoogle Scholar
  23. 23.
    S. Ishaq, M. Moussa, F. Kanwal, M. Ehsan, M. Saleem, T.N. Van, D. Losic, Facile synthesis of ternary graphene nanocomposites with doped metal oxide and conductive polymers as electrode materials for high performance supercapacitors. Sci. Rep. 9, 5974 (2019)CrossRefGoogle Scholar
  24. 24.
    A.A. Elzatahry, A.M. Abdullah, T.A.S. El-Din, A.M. Al-Enizi, A.A. Maarouf, A. Galal, H.K. Hassan, E.H. El-Ads, S.S. Al-Theyab, A.A. Al-Ghamdi, Nanocomposite graphene-based material for fuel cell applications. Int. J. Electrochem. Sci. 7, 3115–3126 (2012)Google Scholar
  25. 25.
    F.T. Johra, J.W. Lee, W.G. Jung, Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 20, 2883–2887 (2014)CrossRefGoogle Scholar
  26. 26.
    N.I. Zaaba, K.L. Foo, U. Hashim, S.J. Tan, W.W. Liu, C.H. Voon, Synthesis of graphene oxide using modified hummers method: solvent influence. Proced. Eng. 184, 469–477 (2017)CrossRefGoogle Scholar
  27. 27.
    J. Liu, H. Bai, Y. Wang, Z. Liu, X. Zhang, D.D. Sun, Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv. Func. Mater. 20, 4175–4181 (2010)CrossRefGoogle Scholar
  28. 28.
    M. Nithya, Electrochemical sensing of ascorbic acid on ZnO-decorated reduced graphene oxide electrode. J. Biosens. Bioelectron. 6, 1–9 (2015)Google Scholar
  29. 29.
    P.K. Labhane, L.B. Patle, G.H. Sonawane, S.H. Sonawane, Fabrication of ternary Mn doped ZnO nanoparticles grafted on reduced graphene oxide (RGO) sheet as an efficient solar light driven photocatalyst. Chem. Phys. Lett. 710, 70–77 (2018)CrossRefGoogle Scholar
  30. 30.
    S. Sarkar, D. Basak, The reduction of graphene oxide by zinc powder to produce a zinc oxide-reduced graphene oxide hybrid and its superior photocatalytic activity. Chem. Phys. Lett. 561, 125–130 (2013)CrossRefGoogle Scholar
  31. 31.
    O.D. Jayakumar, I.K. Gopalakrishnan, R.M. Kadam, A. Vinu, A. Asthana, A.K. Tyagi, Magnetization and structural studies of Mn doped ZnO nanoparticles: prepared by reverse micelle method. J. Cryst. Growth 300, 358–363 (2007)CrossRefGoogle Scholar
  32. 32.
    S. Kashyap, S. Mishra, S.K. Behera, Aqueous colloidal stability of graphene oxide and chemically converted graphene. J. Nanopart. 2014, 1–6 (2014)CrossRefGoogle Scholar
  33. 33.
    H.S. Shin, D. Kang, Control of size and physical properties of graphene oxide by changing the oxidation temperature. Carbon Lett. 13, 39–43 (2012)CrossRefGoogle Scholar
  34. 34.
    P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv. Environ. Res. 8, 501–551 (2004)CrossRefGoogle Scholar
  35. 35.
    S. Hyun, L.S. Lee, Quantifying the contribution of different sorption mechanisms for 2,4-dichlorophenoxyacetic acid sorption by several variable-charge soils. Environ. Sci. Technol. 39, 2522–2528 (2005)CrossRefGoogle Scholar
  36. 36.
    A. Azari, M. Salari, M.H. Dehghani, M. Alimohammadi, H. Ghaffari, K. Sharafi, N. Shariatifar, M. Baziar, Efficiency of magnitized graphene oxide nanoparticles in removal of 2,4-dichlorophenol from aqueous solution. J. Mazandaran Univ. Med. Sci. 26, 265–281 (2017)Google Scholar
  37. 37.
    R. Piri, M. Kermani, A. Esrafili, Using persulfate-based photochemical oxidation (UV/NA2s2o8) in eliminating 4-chlorophenol from aqueous solutions. J. Mazandaran Univ. Med. Sci. 27, 358–370 (2017)Google Scholar
  38. 38.
    A. Maleki, Y. Zandsalimi, B. Shahmoradi, R. Rezaie, M.A. Pordel, Comparison of the efficiency of photochemical processes combined with UV/H2O2 and UV/TiO2 in removal of Acid Red 18 from aqueous solutions. Sci. J. Kurd. Univ. Med. Sci. 16, 101–108 (2011)Google Scholar
  39. 39.
    A. Maleki, B. Shahmoradi, Solar degradation of Direct Blue 71 using surface modified iron doped ZnO hybrid nanomaterials. Water Sci. Technol. 65, 1923–1928 (2012)CrossRefGoogle Scholar
  40. 40.
    F. He, D. Zhao, J. Liu, C.B. Roberts, Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind. Eng. Chem. Res. 46, 29–34 (2007)CrossRefGoogle Scholar
  41. 41.
    R. Darvishi Cheshmeh Soltani, A. Rezaee, M. Safari, A.R. Khataee, B. Karimi, Photocatalytic degradation of formaldehyde in aqueous solution using ZnO nanoparticles immobilized on glass plates. Desalin. Water Treat. 53, 1613–1620 (2015)CrossRefGoogle Scholar
  42. 42.
    N. Kashif, F. Ouyang, Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2. J. Environ. Sci. 21, 527–533 (2009)CrossRefGoogle Scholar
  43. 43.
    H. Hossaini, G. Moussavi, M. Farrokhi, Oxidation of diazinon in cns-ZnO/LED photocatalytic process: catalyst preparation, photocatalytic examination, and toxicity bioassay of oxidation by-products. Sep. Purif. Technol. 174, 320–330 (2017)CrossRefGoogle Scholar
  44. 44.
    T.S. Natarajan, M. Thomas, K. Natarajan, H.C. Bajaj, R.J. Tayade, Study on UV-LED/TiO2 process for degradation of Rhodamine B dye. Chem. Eng. J. 169, 126–134 (2011)CrossRefGoogle Scholar
  45. 45.
    D. Mijin, M. Savic, P. Snezana, A. Smiljanic, O. Glavaski, M. Jovanovic, S. Petrovic, A study of the photocatalytic degradation of metamitron in ZnO water suspensions. Desalination 249, 286–292 (2009)CrossRefGoogle Scholar
  46. 46.
    S.R. Mirmasoomi, M. Mehdipour Ghazi, M. Galedari, Photocatalytic degradation of diazinon under visible light using TiO2/Fe2O3 nanocomposite synthesized by ultrasonic-assisted impregnation method. Sep. Purif. Technol. 175, 418–427 (2017)CrossRefGoogle Scholar
  47. 47.
    A. Sidmohammadi, G. Asgari, A. Ebrahimi, Z. Sharifi, A.H. Movahedian, 4-Chlorophenol oxidation combined with the application of advanced oxidation technology and the modified microwave in chemical and petrochemical wastewater industry. Health Syst. Res. 6, 390–396 (2010)Google Scholar
  48. 48.
    S. Akhtar, A.A. Khan, Q. Husain, Potential of immobilized bitter gourd (Momordica charantia) peroxidases in the decolorization and removal of textile dyes from polluted wastewater and dyeing effluent. Chemosphere 60, 291–301 (2005)CrossRefGoogle Scholar
  49. 49.
    H. Chen, H. Luo, Y. Lan, T. Dong, B. Hu, Y. Wang, Removal of tetracycline from aqueous solutions using polyvinylpyrrolidone (PVP-K30) modified nanoscale zero valent iron. J. Hazard. Mater. 192, 44–53 (2011)Google Scholar
  50. 50.
    D. Shao, X. Wang, Q. Fan, Photocatalytic reduction of Cr(VI) to Cr(III) in solution containing ZnO or ZSM-5 zeolite using oxalate as model organic compound in environment. Microporous Mesoporous Mater. 117, 243–248 (2009)CrossRefGoogle Scholar
  51. 51.
    G. Moussavi, H. Hosseini, A. Alahabadi, The investigation of diazinon pesticide removal from contaminated water by adsorption onto NH4Cl-induced activated carbon. Chem. Eng. J. 214, 172–179 (2013)CrossRefGoogle Scholar
  52. 52.
    A.A. Khodja, T. Sehili, J.-F.O. Pilichowski, P. Boule, Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. J. Photochem. Photobiol., A 141, 231–239 (2001)CrossRefGoogle Scholar
  53. 53.
    I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B 49, 1–14 (2004)CrossRefGoogle Scholar
  54. 54.
    K. Vignesh, M. Rajarajan, A. Suganthi, Visible light assisted photocatalytic performance of Ni and Th co-doped ZnO nanoparticles for the degradation of methylene blue dye. J. Ind. Eng. Chem. 20, 3826–3833 (2014)CrossRefGoogle Scholar
  55. 55.
    E. Topkaya, M. Konyar, H.C. Yatmaz, K. Öztürk, Pure ZnO and composite ZnO/TiO2 catalyst plates: a comparative study for the degradation of azo dye, pesticide and antibiotic in aqueous solutions. J. Colloid Interface Sci. 430, 6–11 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical SciencesSanandajIran
  2. 2.School of HealthLorestan University of Medical SciencesKhorramabadIran
  3. 3.Department of Environmental Engineering, Faculty of Civil EngineeringYildiz Technical UniversityIstanbulTurkey
  4. 4.Department of Water and Health, Faculty of Life SciencesJagadguru Sri Shivarathreeshwara UniversityMysuruIndia

Personalised recommendations