Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Meloxicam-LDH Hybrid Compound: A Successful Strategy to Improve Solubility

  • 42 Accesses

Abstract

The use of nanohybrids containing cationic or anionic inorganic compounds, seems particularly promising as efficient strategy for drug delivery. In fact, the inorganic counterions usually present in the host can be easily exchanged with drug molecules, from antitumor to anti-inflammatory, antibiotics and vitamins, giving rise to composites with improved solubility. An interesting inorganic host emerging for different applications, from catalysis to water purification up to pharmaceutics, is the layered double hydroxide (LDH) possessing a sheets structure and formula [\({\text{M}}_{{1 - {\text{x}}}}^{2 + }\)\({\text{M}}_{\text{x}}^{3 + }\) (OH)2](An−)x/n yH2O (M2+ = Zn, Mg; M3+ = Al; An− = nitrates, carbonates, chlorides). In this paper, we synthesize by co-precipitation and reconstruction methods the hybrid compound Meloxicam-Zn3Al-LDH, particularly useful for a poorly soluble anti-inflammatory drug. The effective drug intercalation into LDH was verified through X-ray powder diffraction, thermal measurement and infrared spectroscopy. In addition, microscopy/microanalysis supported the formation of new entities. The dissolution tests clearly demonstrate an amazing improvement of the drug release rate with respect to marketed compounds when meloxicam is in the form of hybrid compound.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    H.D. Williams, N.L. Trevaskis, S.A. Charman, R.M. Shanker, W.N. Charman, C.W. Pouton, C.J. Porter, Pharmacol. Rev. 65, 315 (2013)

  2. 2.

    V. Rives, M. Del Arco, C. Martin, Appl. Clay Sci. 88–89, 239 (2014)

  3. 3.

    Y. Kuthati, R. Kumar Kankaòa, C.H. Lee, Appl. Clay Sci. 112–113, 100 (2015)

  4. 4.

    F. Leroux, C. Taviot-Gueho, J. Mater. Chem. 15, 3628 (2005)

  5. 5.

    G. Mishra, B. Dash, S. Pandey, Appl. Clay Sci. 153, 172 (2018)

  6. 6.

    M. Bini, F. Monteforte, J. Anal. Pharm. Res. 7, 00206 (2018)

  7. 7.

    R. von-Allman, Chimia 24, 99 (1970)

  8. 8.

    M. Del Arco, E. Cebadera, S. Gutierrez, C. Martin, M.J. Montero, V. Rives, J. Rocha, M.A. Sevilla, J. Pharm. Sci. 93, 1649 (2004)

  9. 9.

    K.L. Erickson, T.E. Bostrom, R.L. Frost, Mater. Lett. 59, 226 (2005)

  10. 10.

    J. Rocha, M. Del Arco, V. Rives, M.A. Ulibarri, J. Mater. Chem. 9, 2499 (1999)

  11. 11.

    T.S. Stanimirova, G. Kirov, E. Dinolova, J. Mater. Sci. Lett. 20, 453 (2001)

  12. 12.

    M.S. San Roman, M.J. Holgado, B. Salinas, V. Rives, Appl. Clay Sci. 55, 158 (2012)

  13. 13.

    X. Pang, X. Ma, D. Li, W. Hou, Solid State Sci. 16, 71 (2013)

  14. 14.

    V. Ambrogi, L. Perioli, V. Ciarnelli, M. Nocchetti, C. Rossi, Eur. J. Pharm. Biopharm. 73, 285 (2009)

  15. 15.

    R. Rojas, L.Y. Garro, S.L. Cuffini, G.A. Monti, C.E. Giacomelli, Appl. Clay Sci. 109–110, 119 (2015)

  16. 16.

    S.J. Ryu, H. Jung, J.M. Oh, J.K. Lee, J.H. Choy, J. Phys. Chem. Solids 71, 685 (2010)

  17. 17.

    D. Capsoni, I. Quinzeni, G. Bruni, V. Friuli, L. Maggi, M. Bini, J. Pharm. Sci. 107, 267 (2018)

  18. 18.

    P. Luger, K. Daneck, W. Engel, G. Trummhtz, K. Wagner, Eur. J. Pharm. Sci. 4, 175 (1996)

  19. 19.

    L. Coppi, M. Bartra Sanmarti, M. Closa Clavo, Patent US 2003/0109701 A1 (2003)

  20. 20.

    D.R. Weyna, M.L. Cheney, N. Shan, M. Hanna, M.J. Zaworotko, V. Sava, S. Song, J.R. Sanchez-Ramos, Mol. Pharm. 9, 2094 (2012)

  21. 21.

    X.Q. Wu, P.X. Tang, S.S. Li, L.L. Zhang, H. Li, Powder Diffr. 29, 196 (2014)

  22. 22.

    J.T.L. Freitas, O.M.M. Santos Viana, R. Bonfilio, A.C. Doriguetto, M.B. de Araújo, Eur. J. Pharm. Sci. 109, 347 (2017)

  23. 23.

    N. Seedher, S. Bhatia, AAPS PharmSciTech 4, 36 (2003)

  24. 24.

    H. Nakayama, E. Narita, Appl. Clay Sci. 35, 146 (2007)

  25. 25.

    H.K. Han, H.K. Choi, Eur. J. Pharm. Biopharm. 65, 99 (2007)

  26. 26.

    S. Defazio, R. Cini, J. Chem. Soc. Dalton Trans. 2002, 1888–1897 (2002)

  27. 27.

    Official Monographs Meloxicam, The United States Pharmacopeia (USP41 - NF36) (United States Pharmacopeial Convention Inc, Rockville, MD, 2018), pp. 2558–2563

  28. 28.

    C.R. Gordijo, C.A.S. Barbosa, A.M. Da Costa Ferreira, V.R.L. Constantino, D. De Oliveira Silva, J. Pharm. Sci. 94, 1135 (2005)

  29. 29.

    F. Barahuie, M.Z. Hussein, P. Arulselvan, S. Fakurazi, Z. Zainal, J. Solid State Chem. 217, 31 (2014)

  30. 30.

    S. Aisawa, N. Higashiyama, S. Takahashi, H. Hirahara, D. Ikematsu, H. Kondo, H. Nakayama, E. Narita, Appl. Clay Sci. 35, 146 (2007)

  31. 31.

    J.L. Wiesner, A.D. de Jager, F.C.W. Sutherland, H.K.L. Hundt, K.J. Swart, A.F. Hundt, J. Els, J. Chromatogr. B 785, 115 (2003)

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Correspondence to Marcella Bini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Monteforte, F., Bruni, G., Quinzeni, I. et al. Meloxicam-LDH Hybrid Compound: A Successful Strategy to Improve Solubility. J Inorg Organomet Polym 30, 637–648 (2020). https://doi.org/10.1007/s10904-019-01230-z

Download citation

Keywords

  • LDH
  • Meloxicam
  • XRPD
  • FT-IR
  • SEM–EDS
  • Dissolution rate